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‣decision trees
‣k-NN
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‣model evaluation
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‣BONUS: batch effect
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‣supervised approach

‣unbiased, no assumptions
‣hierarchical clustering
‣classification of the data into 
biologically meaningful 
subtypes

‣partition data according to 
clinical end point
‣drug resistance, prognosis
‣detect the genes that explain 
the best the difference between 
groups

Learning from oncogenomic data

different approaches

‣unsupervised approach
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v’ant Veer LJ et al., Nature 2008
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‣Bild AH et al., Nature, 2006
‣Huang E et al., Nature Gen, 2003
‣Sorlie T et al., PNAS, 2001 

‣Berns K et al., Cancer Cell, 2007
‣Huang E et al., Nature Gen, 2003
‣Sorlie T et al., PNAS, 2001 

v’ant Veer LJ et al., Nature 2008

Learning from oncogenomic data

supervised approach

Tuesday, November 9, 2010



‣unsupervised approach
‣k-means and PAM
‣hierarchical clustering
‣supervised approach
‣decision trees
‣k-NN
‣SVM
‣model evaluation
‣survival analysis
‣BONUS: batch effect

Learning from oncogenomic data

outline

Tuesday, November 9, 2010



‣Cluster: a collection of data objects

‣Cluster analysis: grouping a set of data objects into clusters such 

that the data objects are

‣similar to one another within the same cluster

‣dissimilar to the objects in other clusters

‣The quality of a clustering result depends on

‣similarity measure (distance metric)

‣clustering method

‣unsupervised (no training set, no predefined classes)

Learning from oncogenomic data

unsupervised approach: clustering
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‣scalability

‣ability to deal with different types of attributes

‣discovery of classed with arbitrary shape

‣minimal requirements for domain knowledge to determine input parameters

‣able to deal with noise and outliers

‣high-dimensionality

‣incorporation of user-specified constraints

‣interpretability and usability

Learning from oncogenomic data

clustering: requirements
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‣partitioning algorithms/representative-based/prototype-based:

 construct various partitions and then evaluate them by some criterion

‣hierarchical clustering

 create a hierarchical representation of the data set using some criterion

‣density-based

 based on connectivity and density functions

‣grid-based

 based on a multiple-level granularity structure

‣model-based

 hypothesize a model for each cluster and find the best fit that model 
each

Learning from oncogenomic data

major clustering approaches
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‣find representatives

‣cluster the remaining 

around representatives
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representative-based clustering
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‣PAM: each cluster is 

represented by one of the 

objects in the cluster

‣construct a partition of n objects into a set of k clusters

‣given a k, find a partition of k clusters that optimizes the partition criterion

‣examples:

‣K-MEANS: each cluster is 

represented by the center of 

the cluster
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representative-based clustering
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initialize ‘means’ partition find new ‘means’ iterate through 2 and 3

expectation maximization

‣easy to use; well-studied

‣when the number of clusters are known

‣applicable to binary data

pros

‣cluster number is used-defined
‣heuristic (local vs. global optimum)
‣sensitive to noise and outliers
‣sensitive to initialization

cons
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representative-based clustering: k-means
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‣nearest shrunken centroids and PAM (prediction analysis of microarrays - Tibshirani R et 
al. PNAS 2002)
‣shrink the class centroids towards to the overall centroids after standardizing by the 
within-class stdev

centroids

shrunken
centroids
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representative-based clustering: PAM
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Li A and Walling J et al., Cancer Res, 2009

Learning from oncogenomic data

representative-based clustering: PAM
‣k-means and NMF identified two main glioma subtypes: 

G (glioblastoma) and O (oligodendroglial) among other 6 Glioma Subtypes
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‣intuitive visualization

‣any distance measure can be used

‣easy, fast and well-known

HIERARCHICAL

USEFUL

DRAWBACK
‣tree structure imposed on data
‣cannot handle partially observed 
data

C BE D

DE BC

DEF

A

BCDEF

ABCDEF

F

agglomerative
or

top-down

divisive
or

bottom-up

1.linkage algorithms
2.probabilistic models
3.More Bayesian approches

dif. approaches
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hierarchical clustering
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1.minimum or single linkage
2.maximum or complete linkage
3.mean or average linkage

by linkage criterion

1.

2.

3.
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hierarchical clustering
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Alizadeh AA et al., Nature, 2000

‣Distinct types of diffuse large B-cell 
lymphoma identified by gene expression 
profiling
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hierarchical clustering
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Alizadeh AA et al., Nature, 2000
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Alizadeh AA et al., Nature, 2000
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hierarchical clustering

survival analysis
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Sorlie T et al., PNAS, 2001

‣Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical 
implications
‣‘intrinsic’ gene set detected by SAM (significance analysis of microarrays)
‣hierarchical clustering using the intrinsic gene set to cluster breast cancer samples
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hierarchical clustering
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‣Given a collection of records (training set)

‣Each record contains a set of attributes, one of the attribute is the 

class

‣Find a model for the class attribute as a function of the values of other 

attributes.

‣Goal: previously unseen records should be assigned a class as 

accurately as possible

‣A test set is used to determine the accuracy of the model.

‣Usually the data set

training set to validate the model

test set to build the model

Learning from oncogenomic data

supervised approach: classification
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‣decision tree based methods

‣rule based methods

‣memory based reasoning, instance-based learning

‣neural networks

‣Naive Bayes and Bayesian Belief Networks

‣Support Vector Machines

‣Ensemble methods

Learning from oncogenomic data

supervised approach: methods
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Splitting Attributes 

Model: decision tree

induction
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‣a classifier of only 48 miRNA markers among 22 tissues

‣overall accuracy of 90%

‣binary decision tree

‣uses logistic regression to assign a probability of belonging to one of the two branches 

of a node

Rosenfeld N et al., Nature Biotech 2008

Learning from oncogenomic data

decision trees: real life
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Learning from oncogenomic data

decision trees: pros and cons

‣:) inexpensive to construct and extremely fast at classification

‣:) can handle both continuous and symbolic attributes

‣:) a standard method

‣ :)no need for distance functions

‣ :( relies on rectangular appromixation
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‣does not create a model but use training examples directly to classify unseen example (‘lazy’ 

classifiers)

‣examples:

‣nearest neighbor

‣chooses k ‘closest’ point (nearest neighbors)

Learning from oncogenomic data

instance-based methods
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k-NN
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-choose k
‣if too small, sensitive to noise
‣if too large, indistinct class boundaries
‣use techniques like cross validation

-sensitive to noise, so scaling or selecting features is important
-the quality of the distance function
‣large margin nearest neighbor

-better-represented classes may dominate the prediction
‣weighing

-nearest neighbor search can be expensive
‣linear search, space partitioning, etc.

✓high accuracy
✓quite popular

Learning from oncogenomic data

k-NN: pros and cons
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‣to create a ‘class predictor’ to classify new, unknown cases of AML and ALL

‣‘neighborhood analysis’, the closeness of the gene to idealized expression patterns

random idealized 

expression patterns

Golub TR et al., Science 1999

Learning from oncogenomic data

k-NN: pros and cons
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Ramaswamy S et al., Nature Gen 2002

Learning from oncogenomic data

neighborhood analysis
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‣constructs a hyperplane or a set hyperplanes in a high or infinite dimension space for 
classification, regression or other tasks

Learning from oncogenomic data

support vector machines
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-optimization process is quite slow

-uncalibrated class membership probabilities

-only directly applicable for two-class tasks

‣multi-class SVM

✓high accuracy

SVM: pros and consLearning from oncogenomic data

support vector machines
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‣if you have 25 independent classifiers with error rate e = 0.35
‣the error rate of the ensemble is

‣examples: bagging (sampling with replacement) and boosting (adaptively change the 
distribution of training data by focusing on previously misclassified records)

Learning from oncogenomic data

ensemble methods
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Learning from oncogenomic data

one example to describe it all

A, B) consensus clustering (Monti et al. 2003)

TCGA, Cancer Cell 2010

C) SigClust for evealuation of 
cluster significance (Liu et al. 2008)

D) silhouette plots to detect core samples

ClaNC to build a 840-gene classifier
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TCGA, Cancer Cell 2010
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‣metrics for performance evaluation

‣methods for performance evaluation/estimation

‣methods for model comparison

Learning from oncogenomic data

model evaluation

THE IDEA: to focus on the predictive capability of a model
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TP: true positive

FN: false negative

FP: false positive

TN: true negative

confusion matrix

the most popular

Learning from oncogenomic data

metrics
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Learning from oncogenomic data

metrics

‣ACCURACY can be MISLEADING:

‣2-class problem:

‣Class 0 = 9990

‣Class 1 = 10

‣if the model everything to be of Class 0, then

‣accuracy = 9990/1000 = 99.9%
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TP: true positive

FN: false negative

FP: false positive

TN: true negative

confusion matrix

the most popular

cost-sensitive

Learning from oncogenomic data

metrics
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Learning from oncogenomic data

accuracy vs. precision

high accuracy

low precision

low accuracy

high precision

high accuracy

high precision
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Learning from oncogenomic data

precision and recall

recall
e.i. true positive rate

precision

class 1 class 2

TP

FN

FP

TN
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‣holdout

‣reserve 2/3 for training and 2/3 for testing

‣random subsampling

‣repeated holdout

‣cross validation

‣partition data into k disjoint subsets

‣k-fold: train on k-1 partitions, test on the remaining

‣leave-one-out: k=n

‣stratified sampling

‣over-sampling vs under-sampling

‣bootstrap

‣sampling with replacement

Learning from oncogenomic data

performance estimation
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Learning from oncogenomic data

survival analysis

‣a variety of methods for analyzing the timing of events (death, failure, recurrence, etc.)
‣outline
‣the survival function and the Kaplan-Meier estimator

‣ASSUMPTIONS:
‣those under study are representative of all subjects
‣at survival time t those subjects who are under 
observation at that survival time are “at risk for an event”
‣censoring mechanism is unrelated to survival to survival 
time
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‣right-censored time consists of
‣survival time
‣censored/uncensored
‣explanatory variables thought to influence survival time

Learning from oncogenomic data

survival analysis

uncensored
fixed-right censoring

random-right censoring
left censoring

multiple intervals of observation
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‣SURVIVAL FUNCTION: the probability that a 

patient will survival beyond a specified time

‣KAPLAN-MEIER ESTIMATOR: estimates the 

survival function for life-time data

‣to measure the fraction of patients that 

lives or stays free of recurrence beyond a 

specified time

‣can handle censored data

‣ticks mark right-censoring

Learning from oncogenomic data

survival function & Kaplan-Meier Estimator
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“BATCH EFFECTS are sub-groups of measurements that 
have qualitatively different behaviors across conditions and 
are unrelated to the biological or scientific variables in a 
study”

WE DON’T LIKE THEM BECAUSE
‣increased variability and decreased power to 
detect a real biological signal
‣correlation between features

Learning from oncogenomic data

batch effects

Tuesday, November 9, 2010



Irizarry R et al., Nature Rev Gen 2010

microarray expression profiling of 
superficial transitional cell carcinoma 
of bladder cancer samples with or 
without surrounding carcinoma in 
situ
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batch effects
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Irizarry R et al., Nature Rev Gen 2010

TCGA, Nature, 2008

1000 Genomes 
Project

Dick DM et al., AJHG 
2003

HapMap, Nature 
2003

Petricoin EF et al., 
Lancet 2002

Spielman RS et al., 
Nature Gen 2007

Dyrskjot L et al., 
Cancer Res 2004
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‣experiment design solutions
‣distribute batches and other sources of variation across biological 
groups
‣record information about changes in personnel, reagent, storage, etc.

‣statistical solutions

WHAT TO DO?

Learning from oncogenomic data

batch effects

Tuesday, November 9, 2010



Irizarry R et al., Nature Rev Gen 2010
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