

Learning from oncogenomic data outline

- •unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- ▶BONUS: batch effect

different approaches

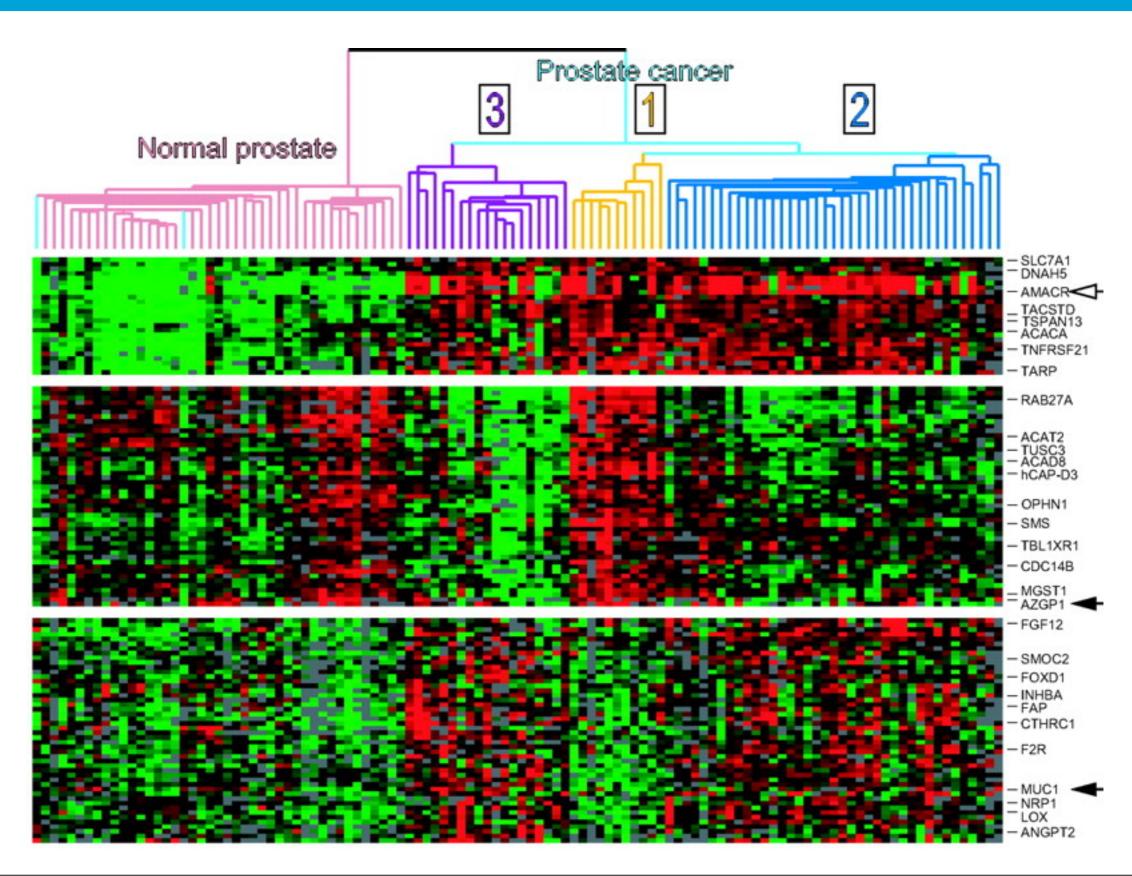
•unsupervised approach

- •unbiased, no assumptions
- hierarchical clustering
- classification of the data into biologically meaningful subtypes

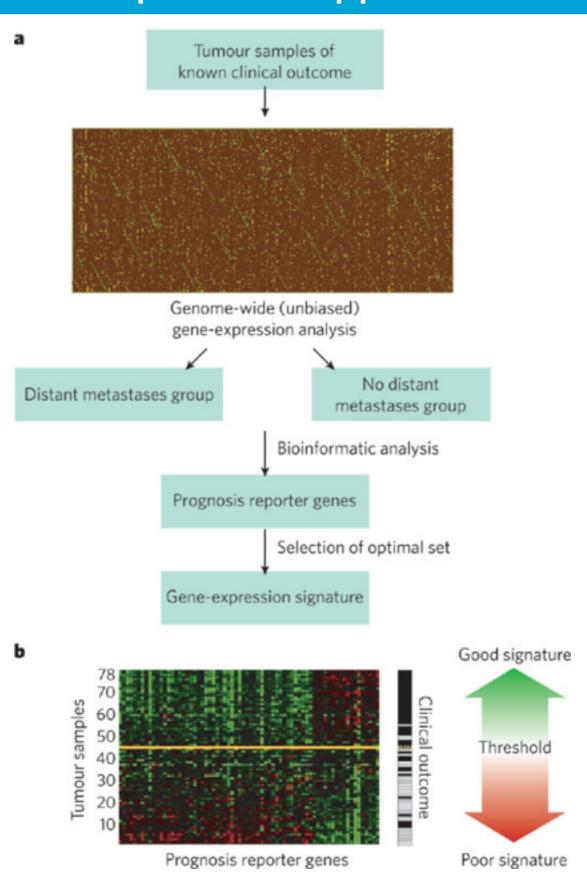
supervised approach

- partition data according to clinical end point
 - drug resistance, prognosis
- In the detect the genes that explain the best the difference between groups

unsupervised approach

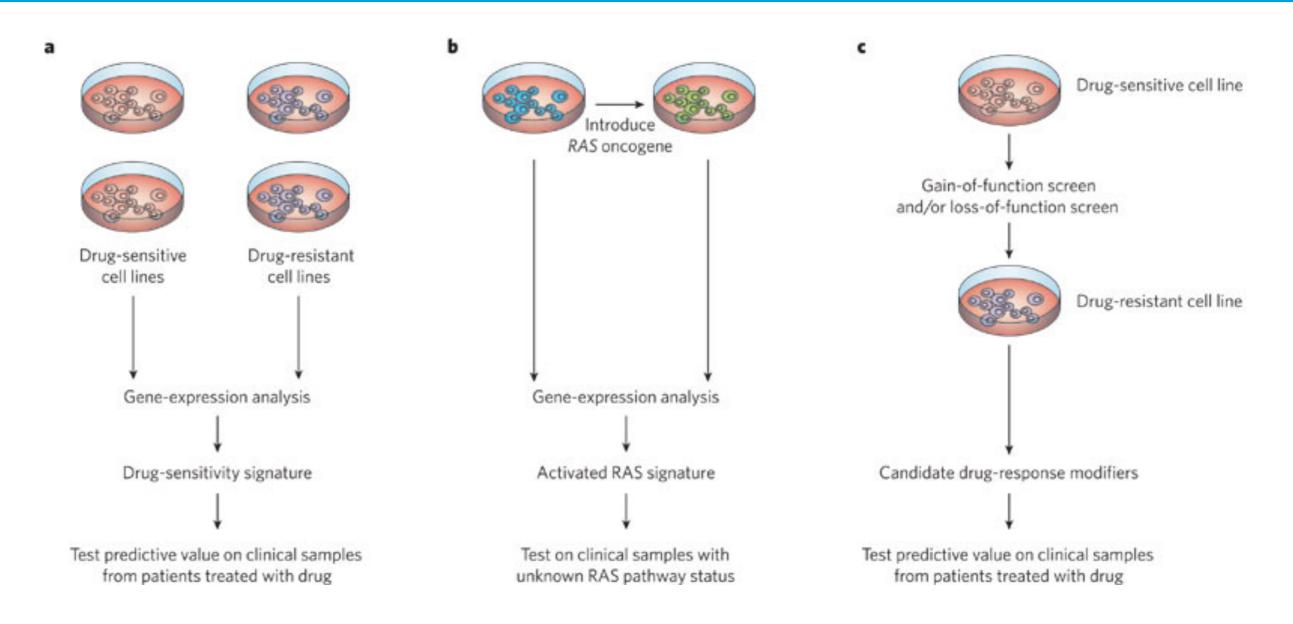


supervised approach



v'ant Veer LJ et al., Nature 2008

supervised approach



- ▶Bild AH et al., Nature, 2006
- ▶ Huang E et al., Nature Gen, 2003
- ▶Sorlie T et al., PNAS, 2001

- ▶Berns K et al., Cancer Cell, 2007
- ▶ Huang E et al., Nature Gen, 2003
- ▶Sorlie T et al., PNAS, 2001

v'ant Veer LJ et al., Nature 2008

Learning from oncogenomic data outline

- unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- **▶**BONUS: batch effect

unsupervised approach: clustering

- ▶Cluster: a collection of data objects
- Cluster analysis: grouping a set of data objects into clusters such that the data objects are
 - similar to one another within the same cluster
 - dissimilar to the objects in other clusters
- ▶The quality of a clustering result depends on
 - ▶similarity measure (distance metric)
 - clustering method
- •unsupervised (no training set, no predefined classes)

clustering: requirements

- ▶ scalability
- ▶ability to deal with different types of attributes
- discovery of classed with arbitrary shape
- Iminimal requirements for domain knowledge to determine input parameters
- ▶able to deal with noise and outliers
- ▶ high-dimensionality
- ▶incorporation of user-specified constraints
- ▶interpretability and usability

major clustering approaches

- partitioning algorithms/representative-based/prototype-based: construct various partitions and then evaluate them by some criterion
- hierarchical clustering

create a hierarchical representation of the data set using some criterion

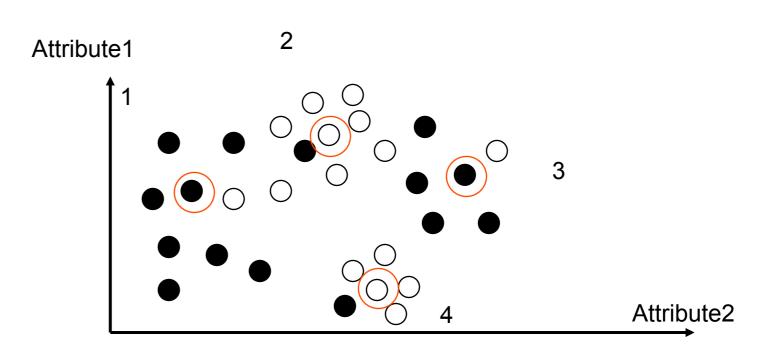
- density-based
 - based on connectivity and density functions
- ▶grid-based

based on a multiple-level granularity structure

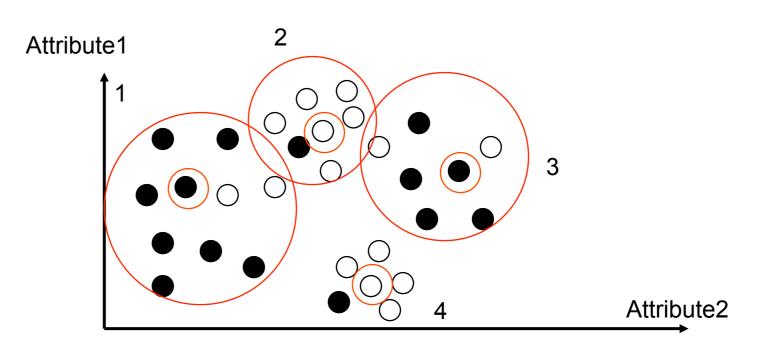
- ▶model-based
 - hypothesize a model for each cluster and find the best fit that model each

representative-based clustering

▶find representatives



cluster the remaining around representatives



representative-based clustering

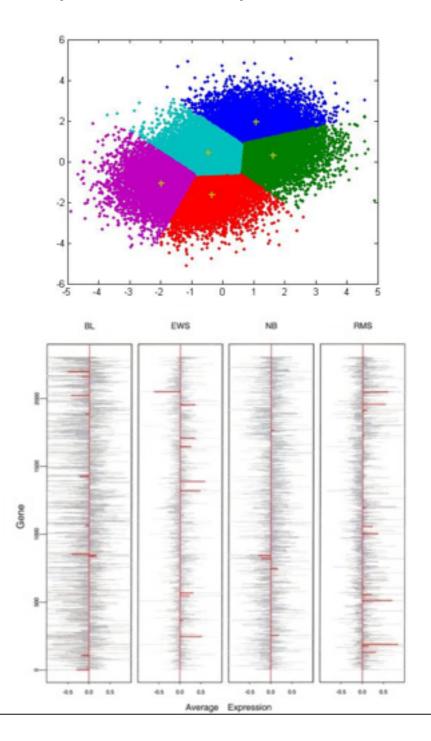
▶construct a partition of *n* objects into a set of *k* clusters

▶given a *k*, find a partition of *k* clusters that optimizes the partition criterion

▶examples:

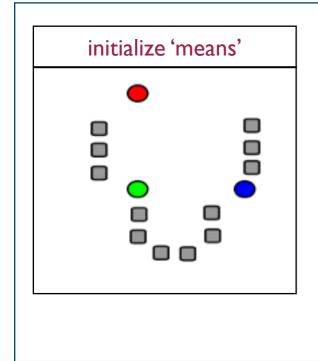
►K-MEANS: each cluster is represented by the center of the cluster

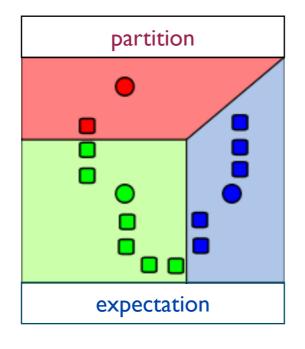
PAM: each cluster is represented by one of the objects in the cluster

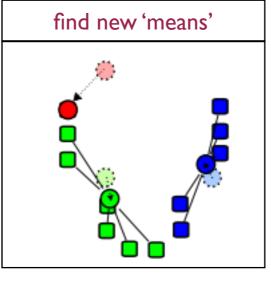


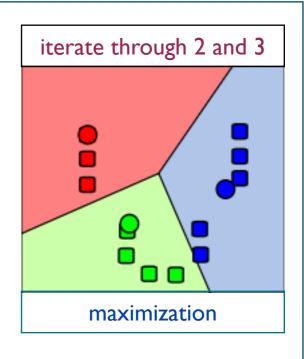
representative-based clustering: k-means

	▶easy to use; well-studied		
pros	when the number of clusters are known		
	▶applicable to binary data		
	▶cluster number is used-defined		
cons	▶heuristic (local vs. global optimum)		
CONS	sensitive to noise and outliers		
	▶sensitive to initialization		



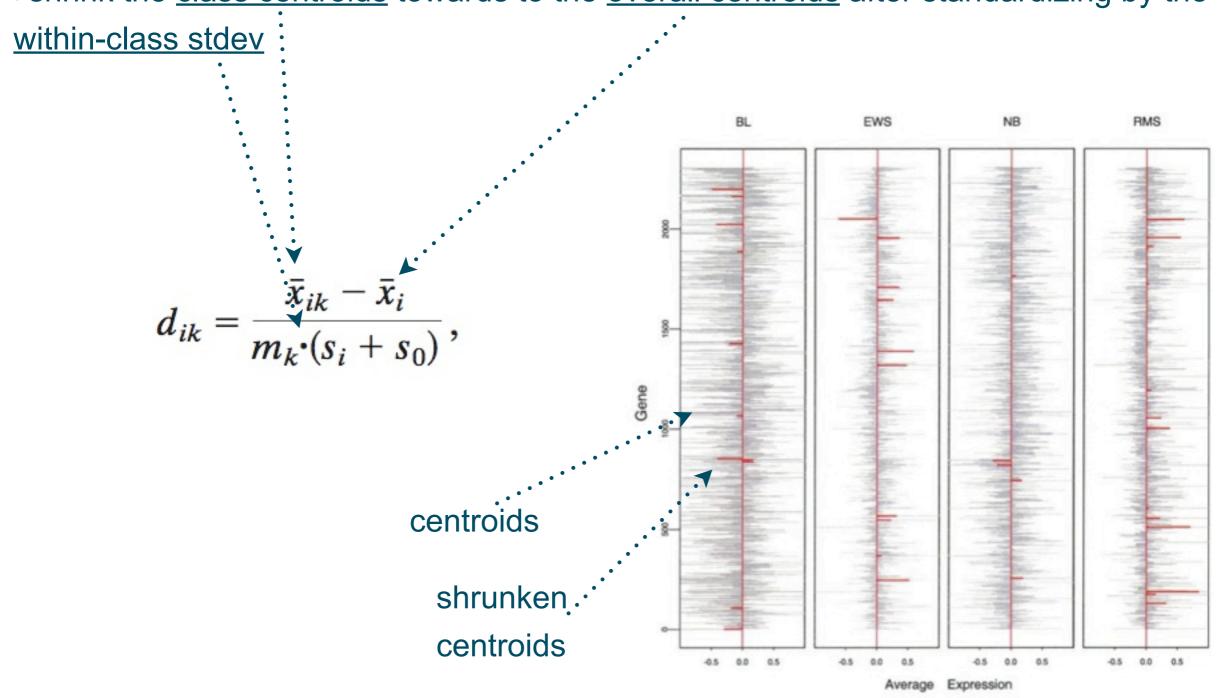






representative-based clustering: PAM

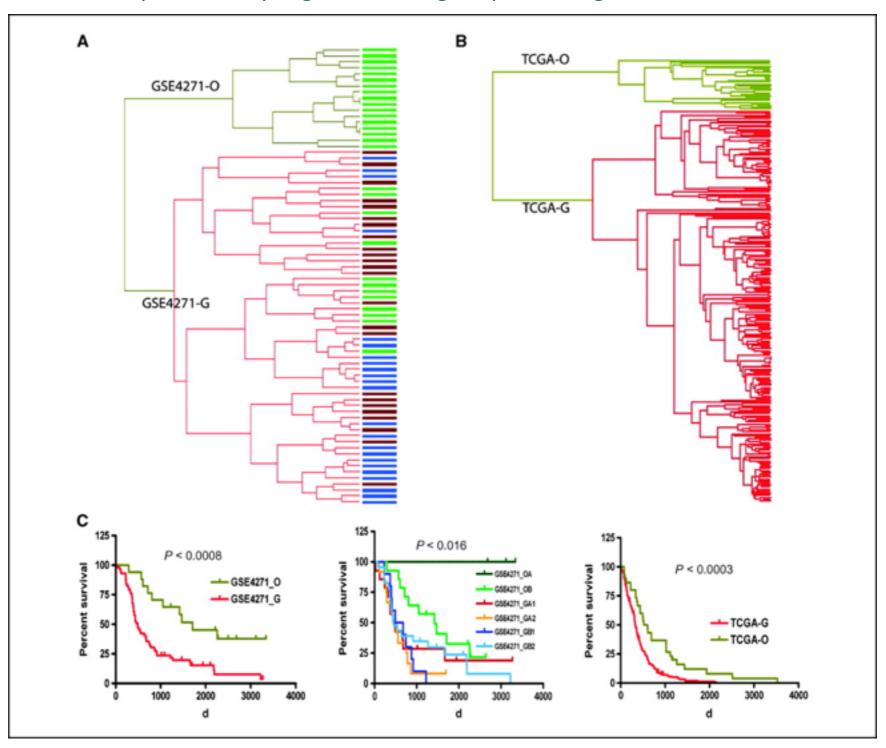
- ▶ nearest shrunken centroids and **PAM** (prediction analysis of microarrays Tibshirani R et al. PNAS 2002)
- shrink the class centroids towards to the overall centroids after standardizing by the



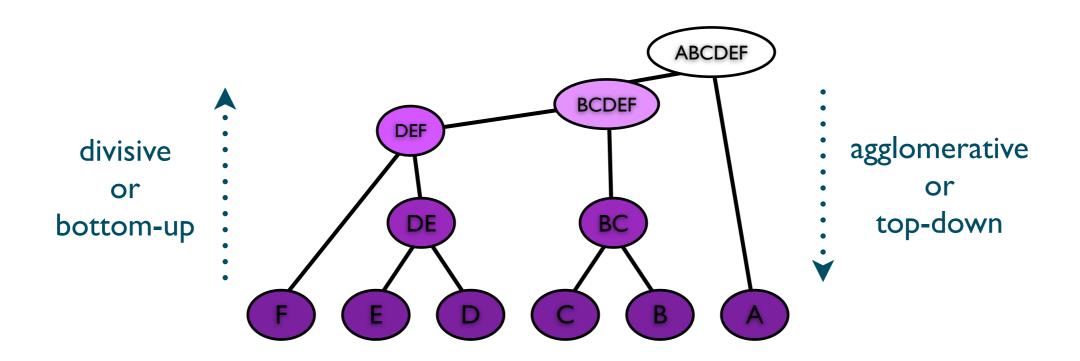
representative-based clustering: PAM

▶k-means and NMF identified two main glioma subtypes:

G (glioblastoma) and O (oligodendroglial) among other 6 Glioma Subtypes



hierarchical clustering



HIERARCHICAL				
USEFUL	▶intuitive visualization▶any distance measure can be used▶easy, fast and well-known			
DRAWBACK	tree structure imposed on datacannot handle partially observed data			

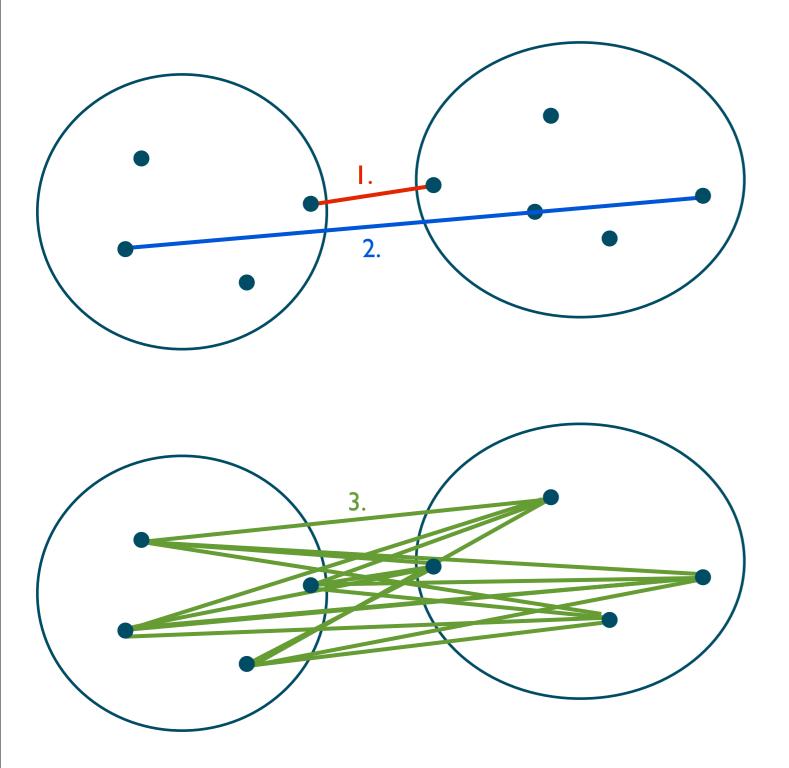
dif. approaches

I.linkage algorithms

2.probabilistic models

3. More Bayesian approches

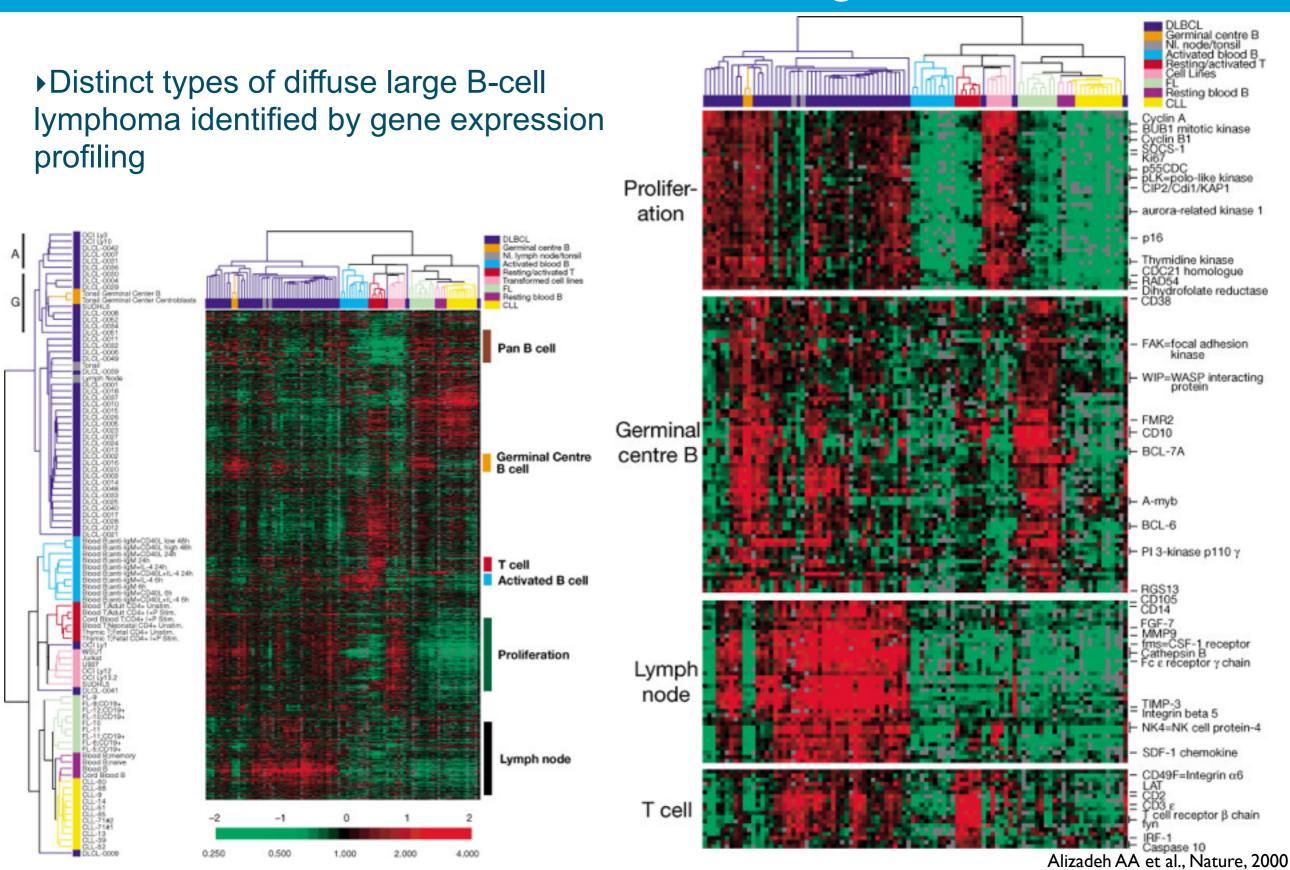
hierarchical clustering



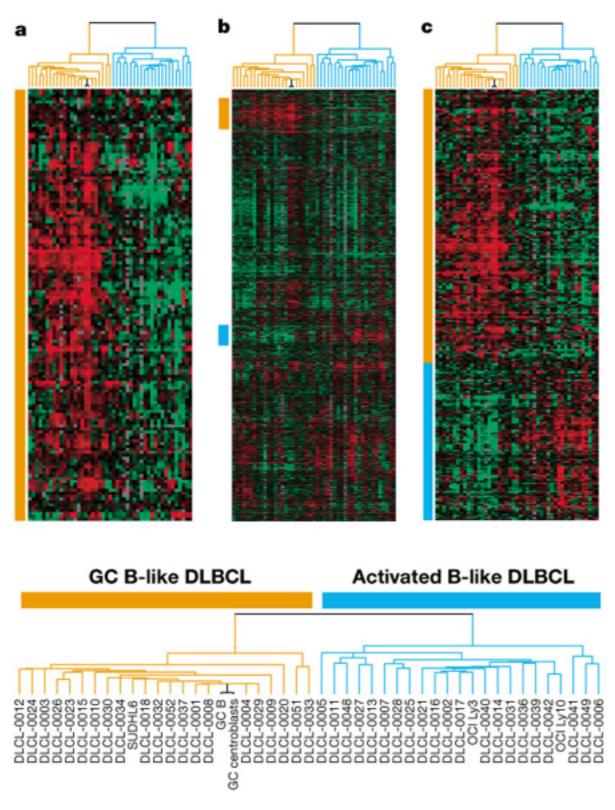
by linkage criterion

- 1.minimum or single linkage
- 2.maximum or complete linkage
- 3.mean or average linkage

hierarchical clustering

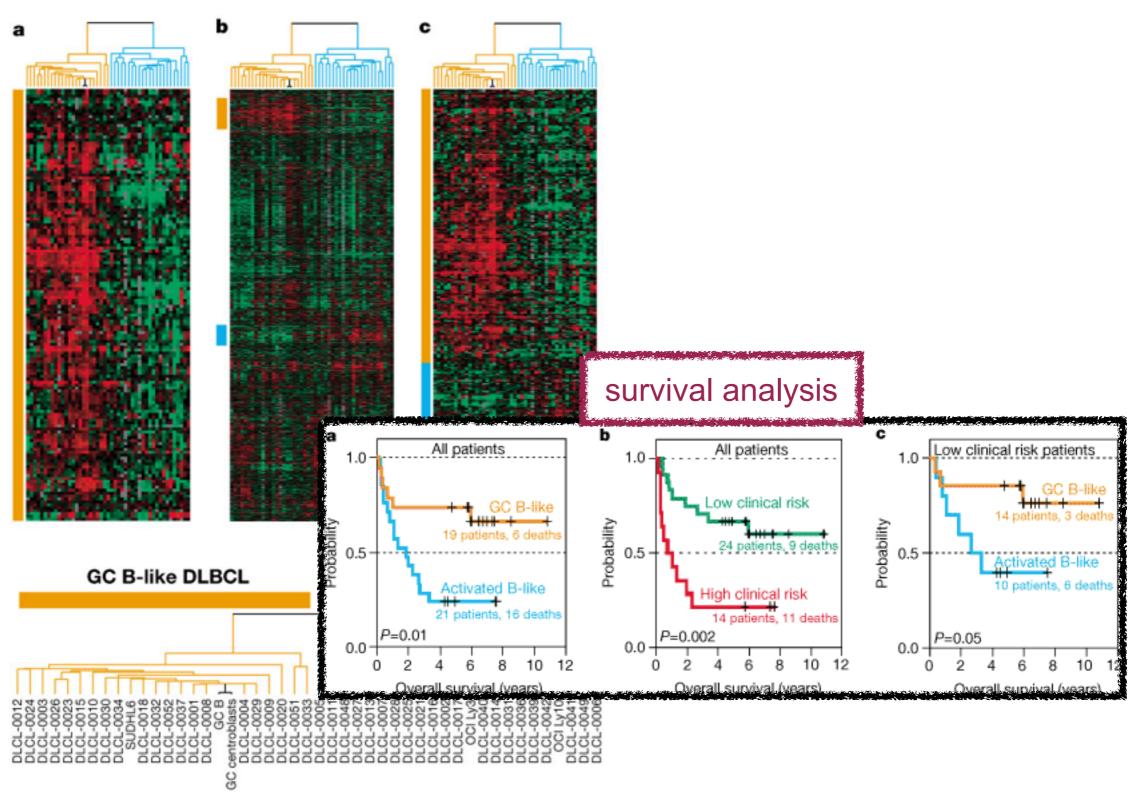


hierarchical clustering



Alizadeh AA et al., Nature, 2000

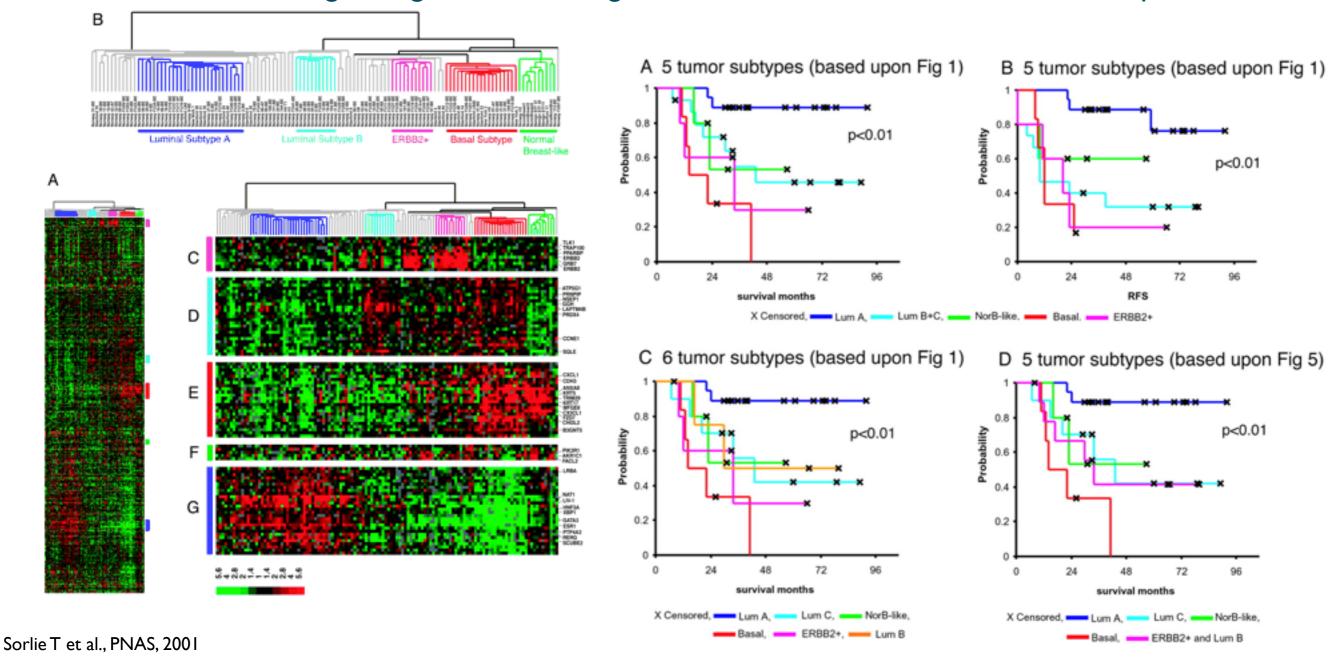
hierarchical clustering



Alizadeh AA et al., Nature, 2000

hierarchical clustering

- ▶Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications
- ▶ 'intrinsic' gene set detected by SAM (significance analysis of microarrays)
- ▶hierarchical clustering using the intrinsic gene set to cluster breast cancer samples



outline

- •unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- ▶BONUS: batch effect

supervised approach: classification

- ▶Given a collection of records (*training set*)
 - Each record contains a set of *attributes*, one of the attribute is the *class*
- Find a *model* for the class attribute as a function of the values of other attributes.
- •Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible
 - A *test set* is used to determine the accuracy of the model.
 - ►Usually the data set test set to build the model training set to validate the model

supervised approach: methods

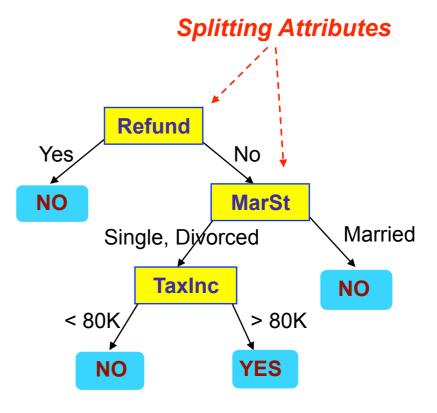
- decision tree based methods
- ▶rule based methods
- •memory based reasoning, instance-based learning
- neural networks
- ▶ Naive Bayes and Bayesian Belief Networks
- Support Vector Machines
- ▶Ensemble methods

decision trees: a simple example

	ical	rical		ous
catego	cate	gorical	Ontinu	class

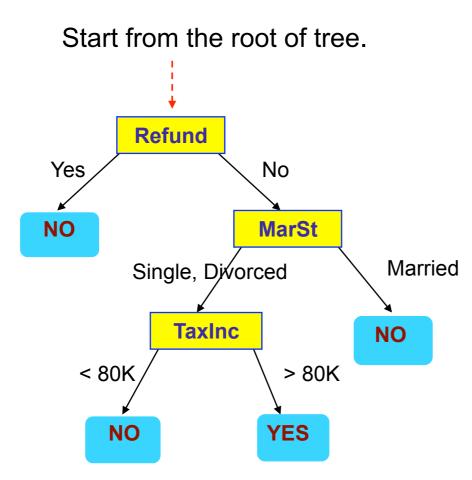
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

training data



Model: decision tree

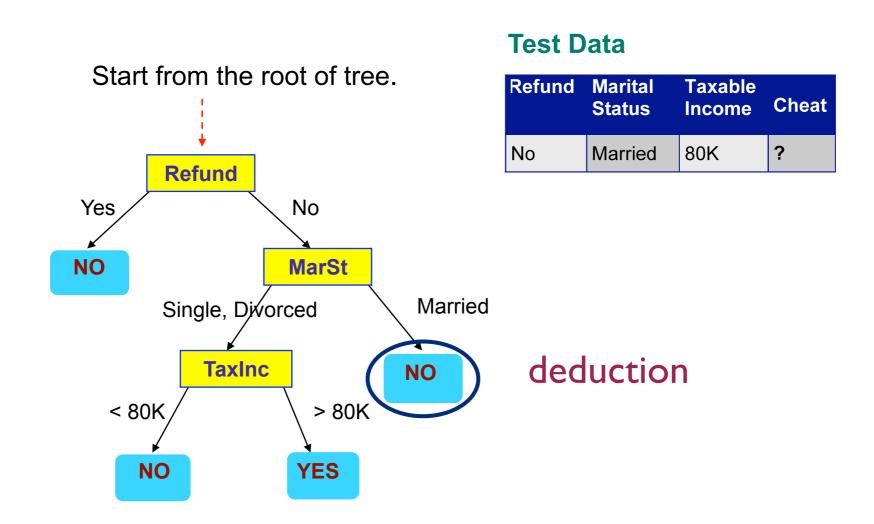
decision trees: a simple example



Test Data

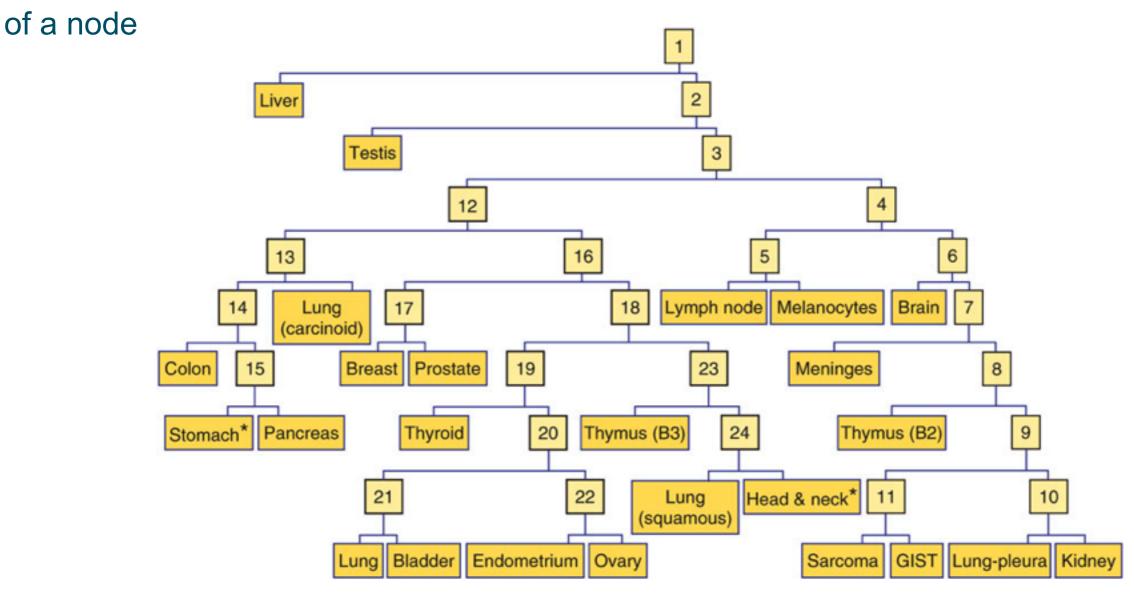
Refund		Marital Status	Taxable Income	Cheat	
	No	Married	80K	?	

decision trees: a simple example



decision trees: real life

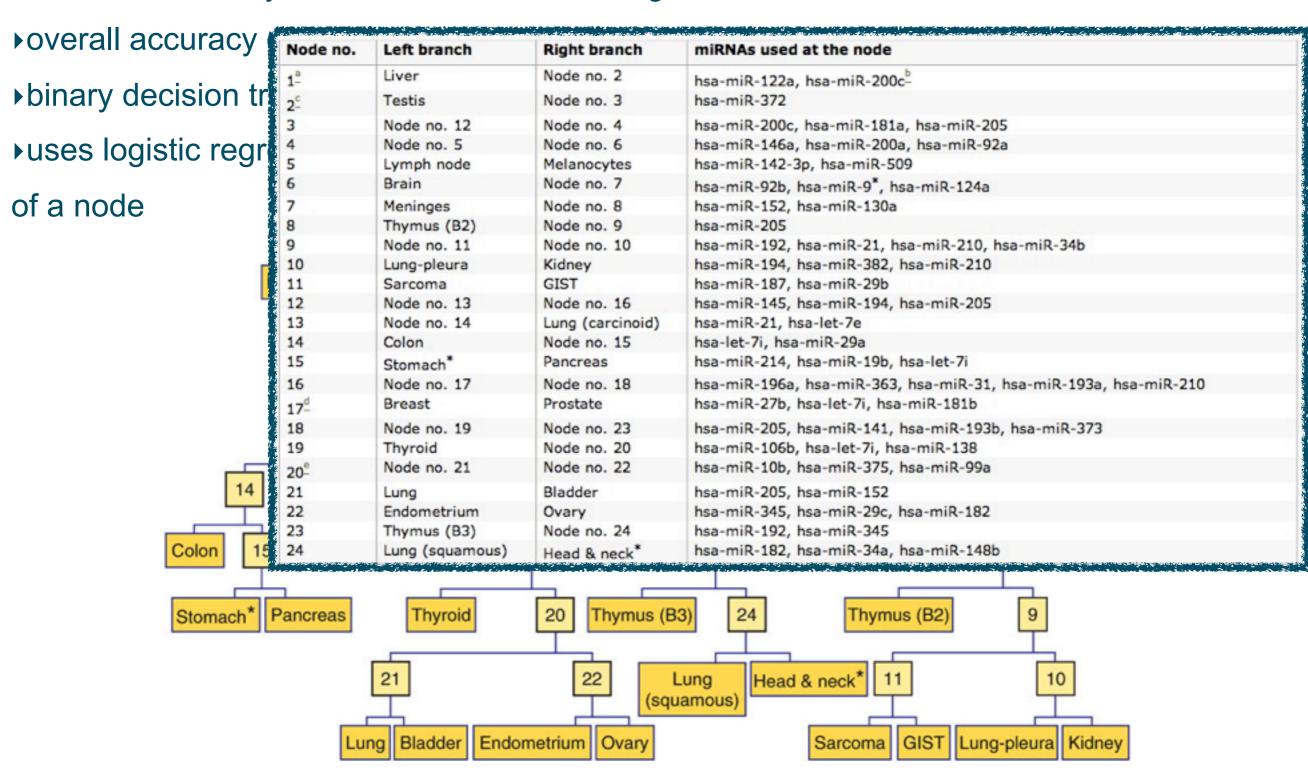
- ▶a classifier of only 48 miRNA markers among 22 tissues
- ▶overall accuracy of 90%
- ▶binary decision tree
- ▶uses logistic regression to assign a probability of belonging to one of the two branches



Rosenfeld N et al., Nature Biotech 2008

decision trees: real life

▶a classifier of only 48 miRNA markers among 22 tissues



Rosenfeld N et al., Nature Biotech 2008

decision trees: pros and cons

- >:) inexpensive to construct and extremely fast at classification
- >:) can handle both continuous and symbolic attributes
- ▶:) a standard method
- ▶ :)no need for distance functions
- > : (relies on rectangular appromixation

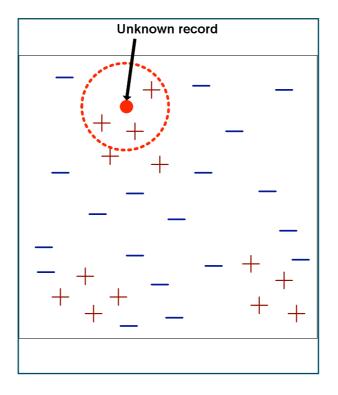
instance-based methods

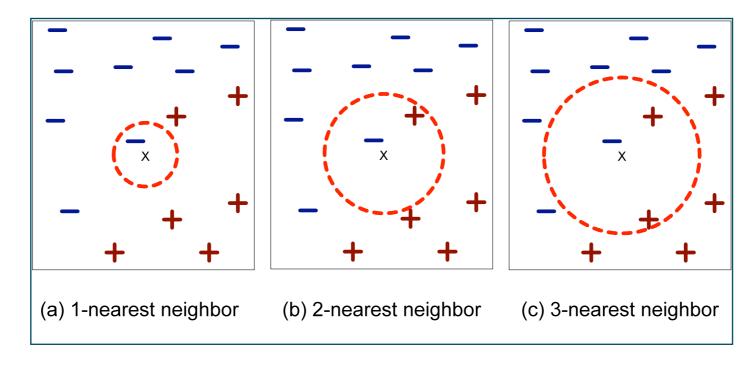
- ▶does not create a model but use training examples directly to classify unseen example ('lazy' classifiers)
- ▶examples:
 - ▶nearest neighbor
 - ▶ chooses k 'closest' point (nearest neighbors)

Set of Stored Cases

Atr1	 AtrN	Class				
		A				
		В				
		В		Unseen Case		
		С				
		A		Atr1		AtrN
		С			1	
		В				

k-NN



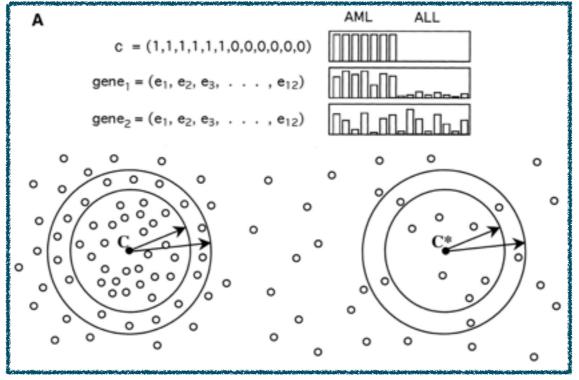


k-NN: pros and cons

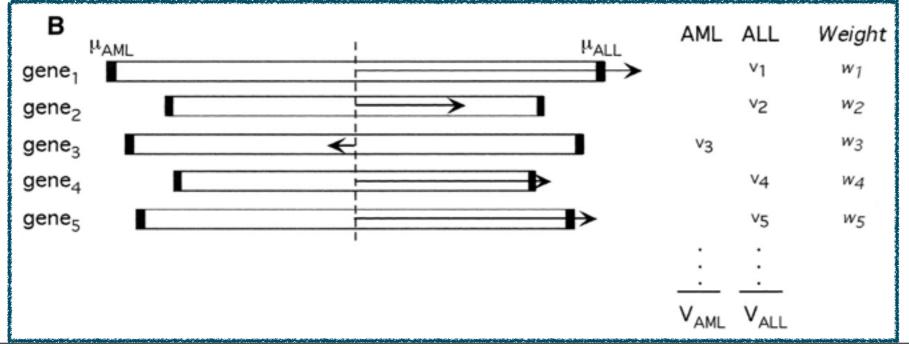
- -choose k
 - ▶if too small, sensitive to noise
 - ▶if too large, indistinct class boundaries
 - •use techniques like cross validation
- -sensitive to noise, so scaling or selecting features is important
- -the quality of the distance function
 - ▶large margin nearest neighbor
- -better-represented classes may dominate the prediction
 - •weighing
- -nearest neighbor search can be expensive
 - ▶linear search, space partitioning, etc.
- √high accuracy
- √ quite popular

k-NN: pros and cons

- to create a 'class predictor' to classify new, unknown cases of AML and ALL
- •'neighborhood analysis', the closeness of the gene to idealized expression patterns



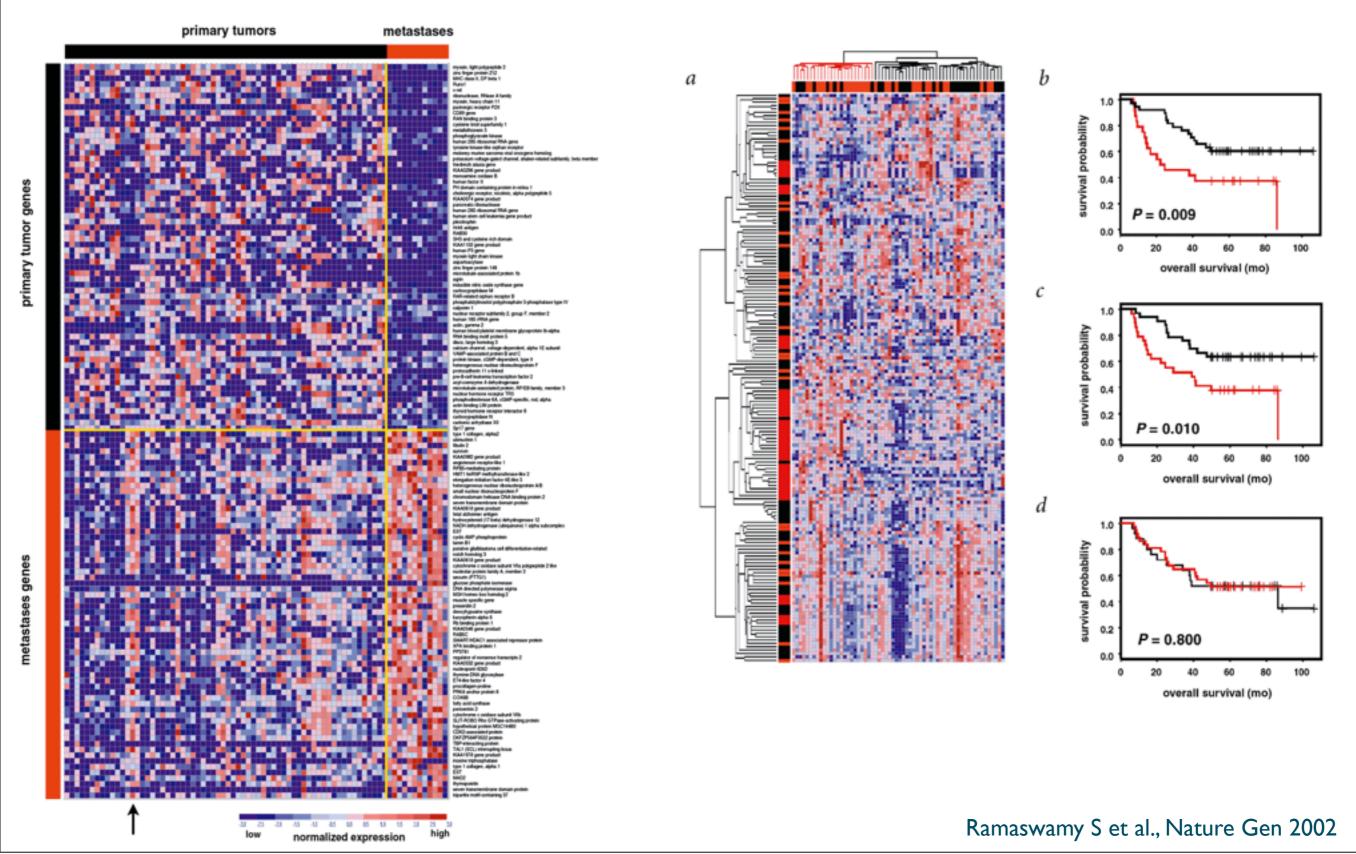
random idealized expression patterns



$$v_i = |x_i - (\mu_{AML} + \mu_{ALL})/2|$$

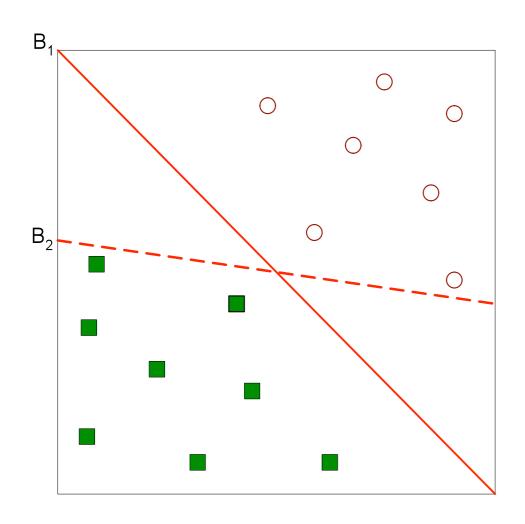
Golub TR et al., Science 1999

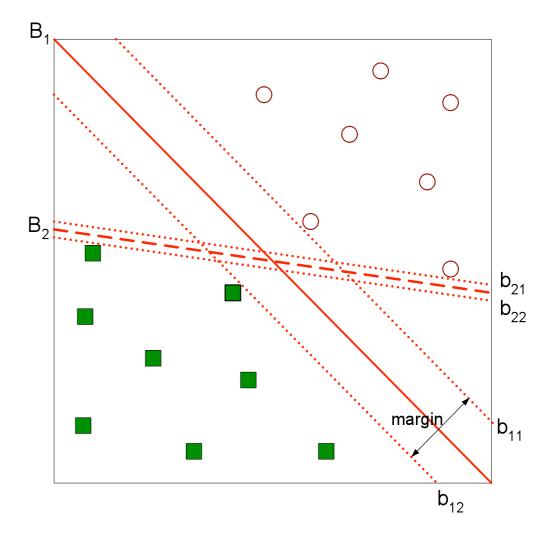
neighborhood analysis



support vector machines

▶constructs a hyperplane or a set hyperplanes in a high or infinite dimension space for classification, regression or other tasks

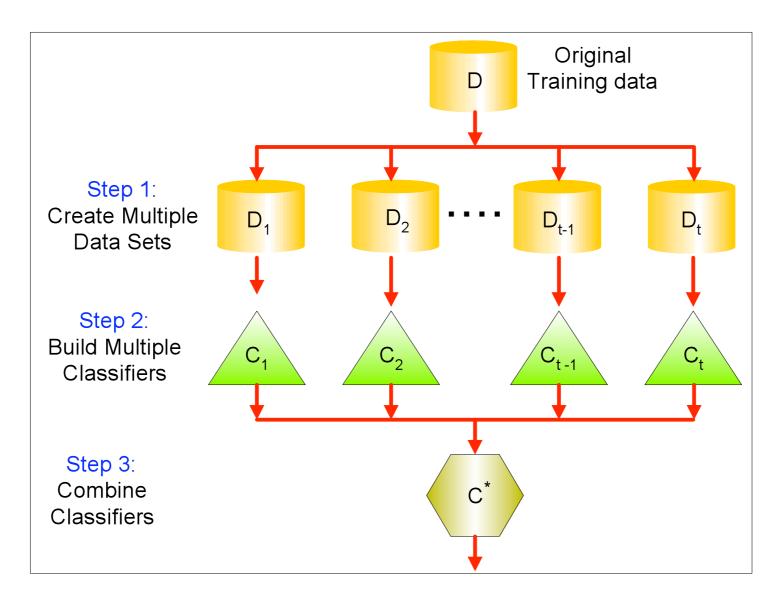




support vector machines

- -optimization process is quite slow
- -uncalibrated class membership probabilities
- -only directly applicable for two-class tasks
 - ▶multi-class SVM
- √ high accuracy

ensemble methods

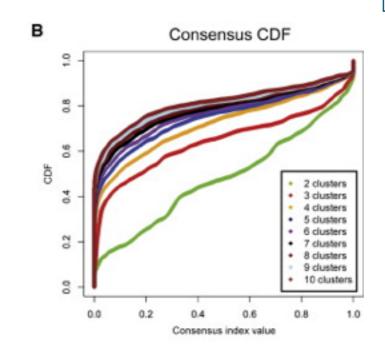


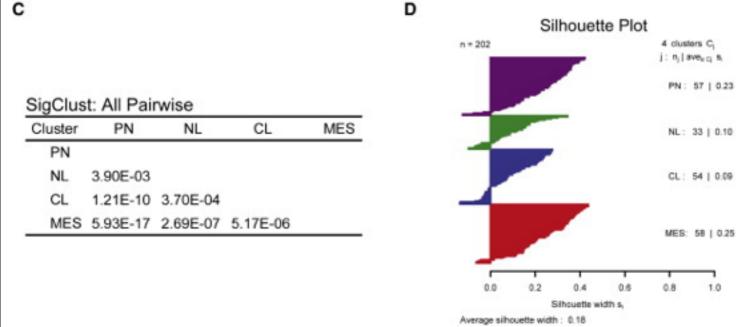
if you have 25 independent classifiers with error rate e = 0.35the error rate of the ensemble is $\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$

▶examples: bagging (sampling with replacement) and boosting (adaptively change the distribution of training data by focusing on previously misclassified records)

one example to describe it all







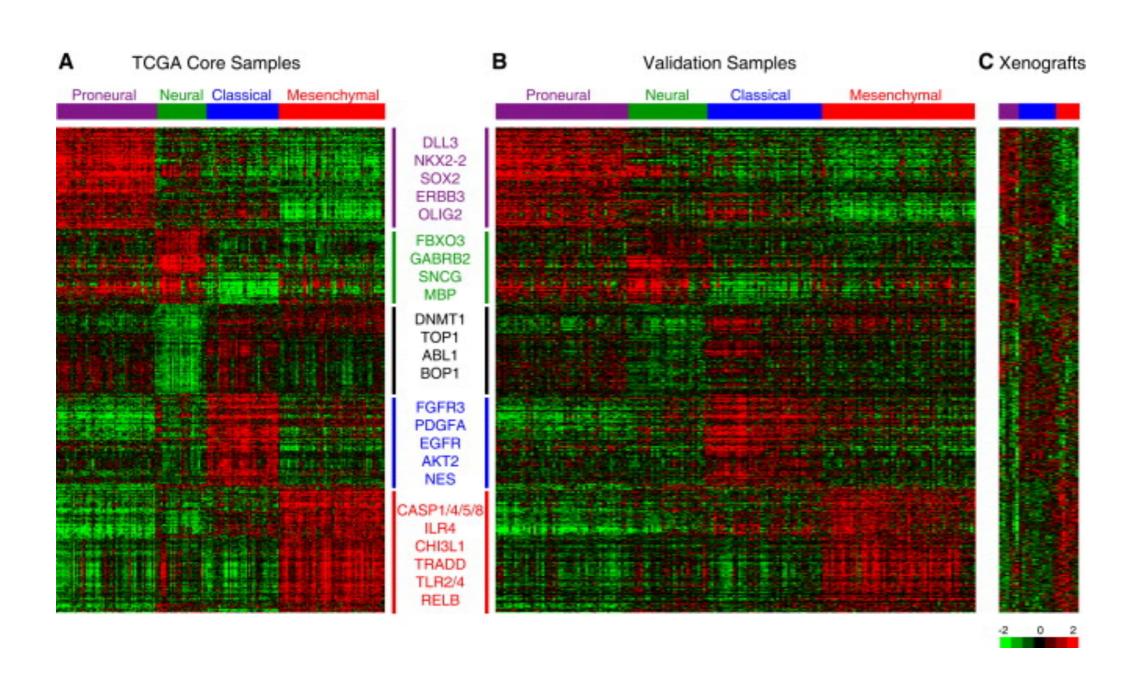
A, B) consensus clustering (Monti et al. 2003)

C) SigClust for evealuation of cluster significance (Liu et al. 2008)

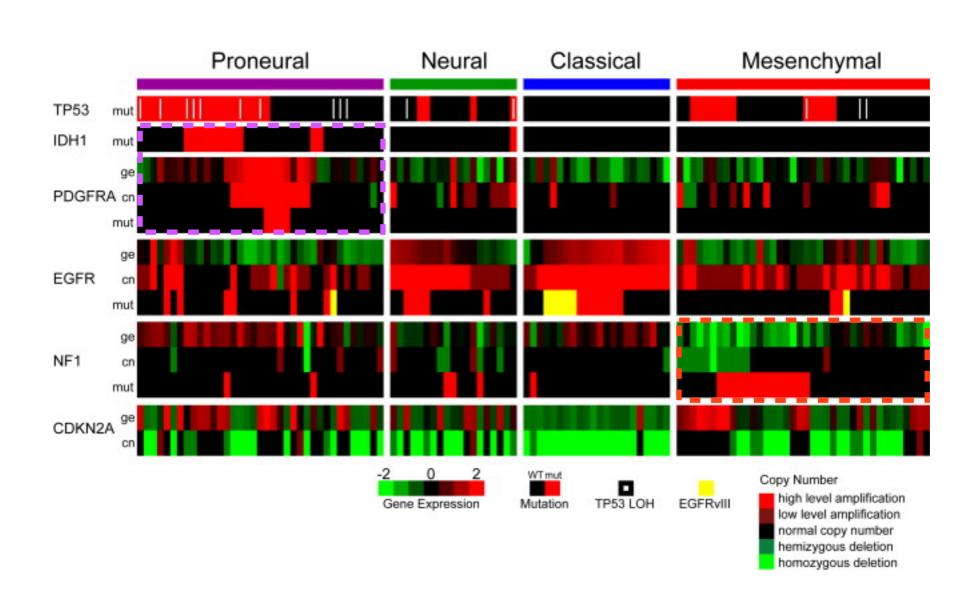
D) silhouette plots to detect core samples

ClaNC to build a 840-gene classifier

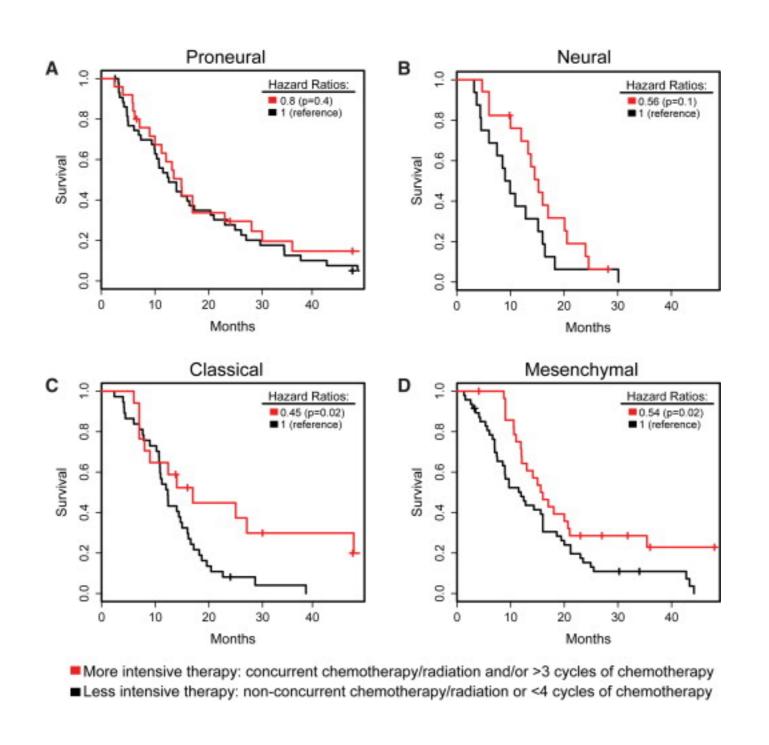
one example to describe it all



one example to describe it all



one example to describe it all



outline

- •unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- ▶BONUS: batch effect

model evaluation

THE IDEA: to focus on the predictive capability of a model

- ▶metrics for performance evaluation
- methods for performance evaluation/estimation
- methods for model comparison

metrics

confusion matrix

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)				
	Class=No	c (FP)	<u>d</u> (TN)				

TP: true positive
FN: false negative
FP: false positive
TN: true negative

the most popular Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

metrics

- ▶ ACCURACY can be MISLEADING:
- ▶2-class problem:
 - Class 0 = 9990
 - **▶**Class | = |0
- if the model everything to be of Class 0, then
 - ▶accuracy = 9990/1000 = 99.9%

metrics

confusion matrix

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)				
	Class=No	c (FP)	<u>d</u> (TN)				

the most popular Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$

Recall (r) =
$$\frac{a}{a+b}$$

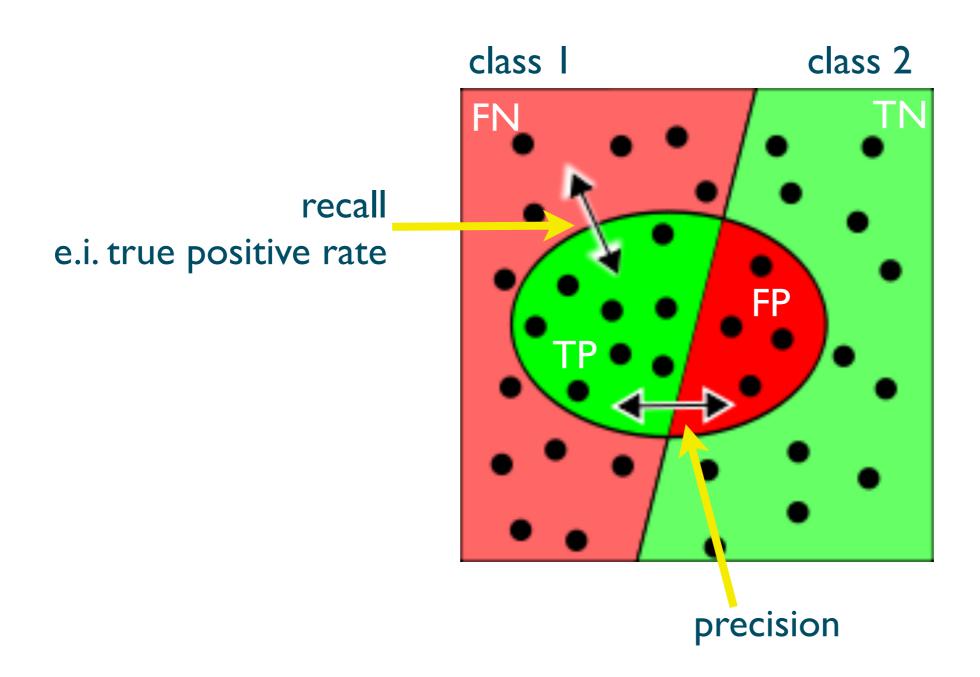
accuracy vs. precision

high accuracy low precision

low accuracy high precision

high accuracy high precision

precision and recall



performance estimation

- **▶**holdout
 - reserve 2/3 for training and 2/3 for testing
- ▶random subsampling
 - ▶repeated holdout
- **▶**cross validation
 - partition data into k disjoint subsets
 - ▶k-fold: train on k-I partitions, test on the remaining
 - ▶leave-one-out: k=n
- stratified sampling
 - over-sampling vs under-sampling
- ▶ bootstrap
 - sampling with replacement

outline

- •unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- ▶BONUS: batch effect

survival analysis

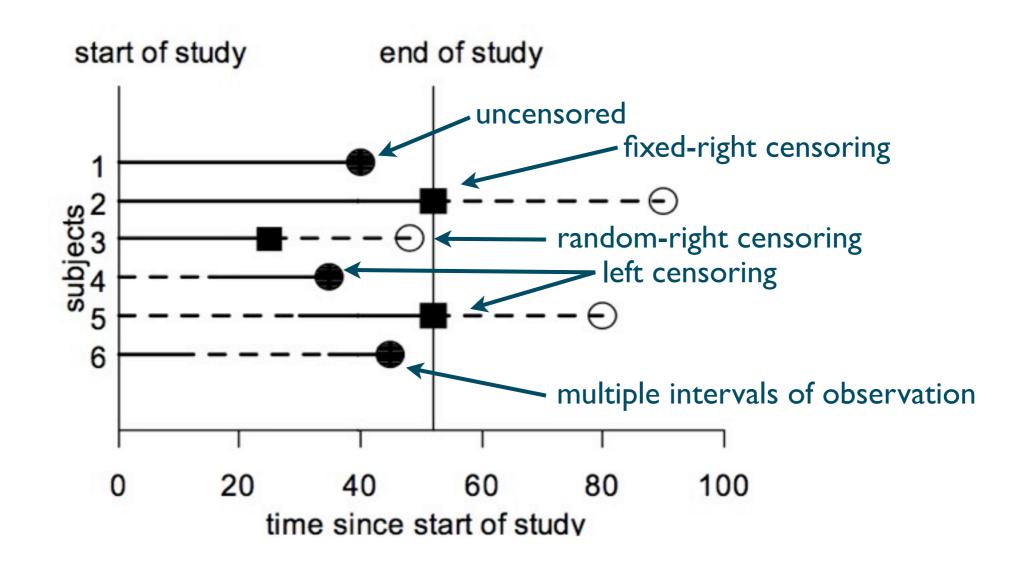
- ▶a variety of methods for analyzing the timing of events (death, failure, recurrence, etc.)
- **•** outline
 - the survival function and the Kaplan-Meier estimator

ASSUMPTIONS:

- those under study are representative of all subjects
- lat survival time t those subjects who are under
- observation at that survival time are "at risk for an event"
- censoring mechanism is unrelated to survival to survival time

survival analysis

- right-censored time consists of
 - survival time
 - censored/uncensored
 - explanatory variables thought to influence survival time



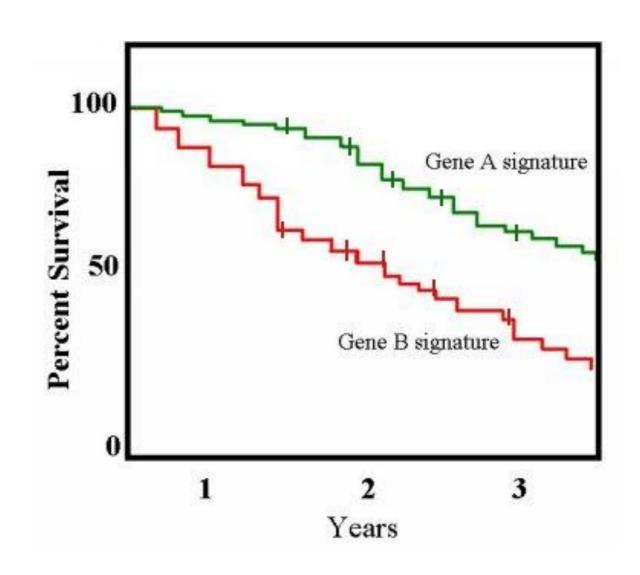
survival function & Kaplan-Meier Estimator

► SURVIVAL FUNCTION: the probability that a patient will survival beyond a specified time

► KAPLAN-MEIER ESTIMATOR: estimates the survival function for life-time data

▶to measure the fraction of patients that lives or stays free of recurrence beyond a specified time

- ▶can handle censored data
- ▶ticks mark right-censoring



outline

- •unsupervised approach
 - ▶k-means and PAM
 - hierarchical clustering
- supervised approach
 - decision trees
 - k-NN
 - **SVM**
- model evaluation
- survival analysis
- ▶BONUS: batch effect

batch effects

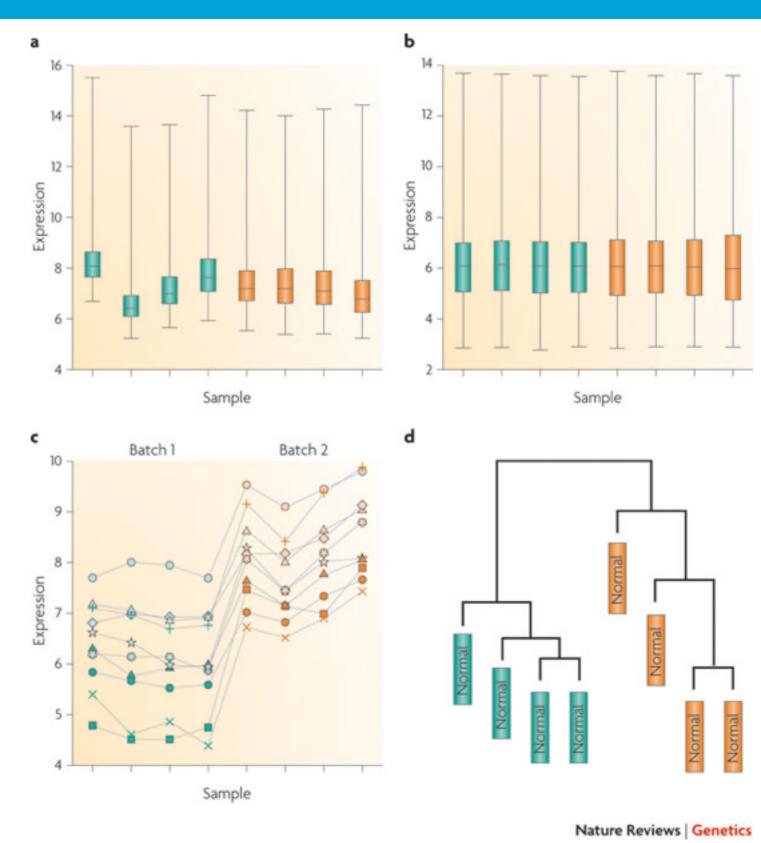
"BATCH EFFECTS are sub-groups of measurements that have qualitatively different behaviors across conditions and are unrelated to the biological or scientific variables in a study"

WE DON'T LIKE THEM BECAUSE

- increased variability and decreased power to detect a real biological signal
- correlation between features

batch effects

microarray expression profiling of superficial transitional cell carcinoma of bladder cancer samples with or without surrounding carcinoma in situ



Irizarry R et al., Nature Rev Gen 2010

batch effects

Data set 1: gene expression microarray, Affymetrix (N _p = 22,283)	Known variable used as a surrogate		Principal components used as a surrogate			Assoc	ciation Refs		
	Surrogate [‡]	Confounding (%) [§]	Susceptible features (%)	Principal components rank of surrogate (correlation) ¶	Principal components rank of outcome (correlation)#	Susceptible features (%)**	outco Signif featur (%) ^{‡3}	icant es	
	Date 29.7	29.7	50.5	1 (0.570)	1 (0.649)	91.6	71.9	Dyrskjot L et al., Cancer Res 2004	
Data set 2: gene expression, Affymetrix ($N_p = 4167$)	Date	77.6	73.7	1 (0.922)	1 (0.668)	98.5	62.2	Spielman RS et al., Nature Gen 2007	
Data set 3: mass spectrometry (N _p = 15,154)	Processing group	100	51.7	2 (0.344)	2 (0.344)	99.7	51.7	Petricoin EF et al., Lancet 2002	
Data set 4: copy number variation, Affymetrix (N _p = 945,806)	Date	29.2	99.5	2 (0.921)	3 (0.485)	99.8	98.8	HapMap, Nature 2003	
Data set 5: copy number variation, Affymetrix (N_p = 945,806)	Date	12.2	83.8	1 (0.553)	1 (0.137)	99.8	74.1	Dick DM et al., AJHG 2003	
Data set 6: gene expression, Affymetrix ($N_p = 22,277$)	Processing group	NA	83.8	5 (0.369)	NA	97.1	NA		
Data set 7: gene expression, Agilent ($N_p = 17,594$)	Date	NA	62.8	2 (0.248)	NA	96.7	NA	TCGA, Nature, 2008	
Data set 8: DNA methylation, Agilent ($N_p = 27,578$)	Processing group	NA	78.6	3 (0.381)	NA	99.8	NA	1000 C	
Data set 9: DNA sequencing, Solexa ($N_p = 2,886$)	Date	24.2	32.1	2 (0.846)	2 (0.213)	72.7	16.9	1000 Genomes Project	

Irizarry R et al., Nature Rev Gen 2010

batch effects

WHAT TO DO?

- ▶ experiment design solutions
 - In distribute batches and other sources of variation across biological groups
 - record information about changes in personnel, reagent, storage, etc.
- ▶ statistical solutions

batch effects

Exploratory analyses

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as laboratory and processing time)

Plot individual features versus biological variables and batch surrogates

Calculate principal components of the high-throughput data and identify components that correlate with batch surrogates

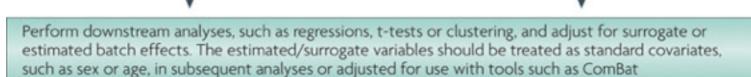
Downstream analyses

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only potential artefacts in the data?

No

Use measured technical variables as surrogates for batch and other technical artefacts

Estimate artefacts from the high-throughput data directly using surrogate variable analysis (SVA)



Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting models, including processing time and date or surrogate variables estimated with SVA, re-cluster the data to ensure that the clusters are not still driven by batch effects

Nature Reviews | Genetics