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Learning from oncogenomic data

different approaches

»unsupervised approach

»supervised approach

»unbiased, no assumptions
»hierarchical clustering
»classification of the data into

biologically meaningful
subtypes

»partition data according to
clinical end point

»drug resistance, prognosis
»detect the genes that explain
the best the difference between

groups
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Learning from oncogenomic data

unsupervised approach

Prostate cancer
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Learning from oncogenomic data

supervised approach

Tumour samples of
known clinical outcome

l

Genome-wide (unbiased)
gene-expression analysis
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Distant metastases group

No distant
metastases group

l Bioinformatic analysis

Prognosis reporter genes

l Selection of optimal set

Gene-expression signature
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v'ant Veer L] et al., Nature 2008 Prognosis reporter genes Poor signature
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Learning from oncogenomic data

supervised approach

Drug-sensitive cell line

RAS oncogene

Gain-of-function screen
and/or loss-of-function screen

Drug-sensitive Drug-resistant
cell lines cell lines
Drug-resistant cell line
. v
Gene-expression analysis Gene-expression analysis
1 1 A
Drug-sensitivity signature Activated RAS signature Candidate drug-response modifiers
Test predictive value on clinical samples Test on clinical samples with Test predictive value on clinical samples
from patients treated with drug unknown RAS pathway status from patients treated with drug
»Bild AH et al., Nature, 2006 »Berns K et al., Cancer Cell, 2007
»Huang E et al,, Nature Gen, 2003 »Huang E et al., Nature Gen, 2003
»Sorlie T et al., PNAS, 200 »Sorlie T et al., PNAS, 200

v’ant Veer L et al,, Nature 2008
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Learning from oncogenomic data

outline

»unsupervised approach
»k-means and PAM
»hierarchical clustering

»supervised approach

»decision trees
»Ik-NN

»SVM

»model evaluation

»survival analysis
»BONUS: batch effect
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Learning from oncogenomic data

unsupervised approach: clustering

» Cluster: a collection of data objects
» Cluster analysis: grouping a set of data objects into clusters such
that the data objects are
»similar to one another within the same cluster
»dissimilar to the objects in other clusters
» The quality of a clustering result depends on
»similarity measure (distance metric)
»clustering method

»unsupervised (no training set, no predefined classes)
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Learning from oncogenomic data

clustering: requirements

»scalability

»ability to deal with different types of attributes

»discovery of classed with arbitrary shape

»minimal requirements for domain knowledge to determine input parameters
»able to deal with noise and outliers

»high-dimensionality

»incorporation of user-specified constraints

»interpretability and usability
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Learning from oncogenomic data

major clustering approaches

»partitioning algorithms/representative-based/prototype-based:

construct various partitions and then evaluate them by some criterion
»hierarchical clustering

create a hierarchical representation of the data set using some criterion
»density-based

based on connectivity and density functions
»grid-based

based on a multiple-level granularity structure
»model-based

hypothesize a model for each cluster and find the best fit that model

each
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Learning from oncogenomic data

representative-based clustering

Attribute 2

3
»find representatives NORS 20

® 0O 4 Attribute2

Attribute 2

»cluster the remaining

around representatives

Attri b‘ute2
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Learning from oncogenomic data

representative-based clustering

»construct a partition of n objects into a set of k clusters

»given a Kk, find a partition of k clusters that optimizes the partition criterion

»examples: ¢

» K-MEANS: each cluster is
represented by the center of

the cluster

o

SLULLIRY |

» PAM: each cluster is

represented by one of the

e
i

Gone
dln o L

objects in the cluster

el s

¢ | 1
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Learning from oncogenomic data

representative-based clustering: k-means

»easy to use; well-studied
pros »when the number of clusters are known

»applicable to binary data

»cluster number is used-defined

»heuristic (local vs. global optimum)
cons

»sensitive to noise and outliers

»sensitive to initialization

initialize ‘means’ partition find new ‘means’ iterate through 2 and 3

®
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oo 0 [ ]
00
expectation maximization
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Learning from oncogenomic data

representative-based clustering: PAM

»nearest shrunken centroids and PAM (prediction analysis of microarrays - Tibshirani R et

al. PNAS 2002)
»shrink the class centroids towards to the overall centroids after standardizing by the

within-class stdev
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Learning from oncogenomic data

representative-based clustering: PAM

»k-means and NMF identified two main glioma subtypes:
G (glioblastoma) and O (oligodendroglial) among other 6 Glioma Subtypes

A B

S .

= TCGA-O
GSE4271-0 —

|

|
|

|
(i

T — TCGA-G

GSER71-G [ —

|
.l

|
il

l
rﬁll

h
|

|
1
il
g1

P <0.0008

Percent survival

e B 8 2 8
2 2 2 s

Li A and Walling ] et al., Cancer Res, 2009
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Learning from oncogenomic data

hierarchical clustering

ABCDEF

divisive . agglomerative
or or
bottom-up top-down

‘é

dif. approaches

HIERARCHICAL

»intuitive visualization

| linkage algorithms
2.probabilistic models
3.More Bayesian approches

USEFUL »any distance measure can be used

»easy, fast and well-known

»tree structure imposed on data
»cannot handle partially observed
data

DRAWBACK
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Learning from oncogenomic data

hierarchical clustering

by linkage criterion

1.minimum or single linkage
2.maximum or complete linkage
3.mean or average linkage
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Learning from oncogenomic data

hierarchical clustering
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hierarchical clustering
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Learning from oncogenomic data

hierarchical clustering

| survival analysis §
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Learning from oncogenomic data

hierarchical clustering

»Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical
implications
»‘intrinsic’ gene set detected by SAM (significance analysis of microarrays)

»hierarchical clustering using the intrinsic gene set to cluster breast cancer samples
C

A 5 tumor subtypes (based upon Fig 1) B 5 tumor subtypes (based upon Fig 1)

M
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Luming Subtype A ERBaz,. sal Subtype ; g x p<00‘ %
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C 6 tumor subtypes (based upon Fig 1) D 5 tumor subtypes (based upon Fig 5)
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Sorlie T et al., PNAS, 2001

Tuesday, November 9, 2010



Learning from oncogenomic data

outline

»unsupervised approach
»k-means and PAM
»hierarchical clustering

»supervised approach

»decision trees
»Ik-NIN

»SVM

»model evaluation
»survival analysis

» BONUS: batch effect
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Learning from oncogenomic data

supervised approach: classification

» Given a collection of records (training set)
»Each record contains a set of aftributes, one of the attribute is the

class
»Find a model for the class attribute as a function of the values of other

attributes.
» Goal: previously unseen records should be assigned a class as

accurately as possible
»A test set is used to determine the accuracy of the model.

»Usually the data set; ........... » test set to build the model

tFaining set to validate the model
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Learning from oncogenomic data

supervised approach: methods

»decision tree based methods

»rule based methods

»memory based reasoning, instance-based learning
»neural networks

»Naive Bayes and Bayesian Belief Networks
»Support Vector Machines

»Ensemble methods
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Learning from oncogenomic data

decision trees: a simple example

Tid Refund Marital Taxable

Status Income Cheat Splitting Attl’ibutes
71\
1 |Yes |Single |125K |No l‘.
2 [No Married |100K  |No x '.
1
3 |No Single | 70K No Refund !
_ Yes No .
4 Yes Married |120K No
5 |No Divorced |95K Yes c o o o o ) - MarSt
6 |[No Married |60K No . . Single, Dij¥orced N\‘/Iarried
7 Yes Divorced [220K No | n d U Ct' On
8 |No Single 85K Yes Usbdl e -
9 No Married |75K No <80K > 80K
10 |No Single 90K Yes -

training data Model: decision tree

Tuesday, November 9, 2010



Learning from oncogenomic data

decision trees: a simple example

Start from the root of tree.

‘
Refund

NS

MarSt

Single,y/orced

Taxinc

< SOV

\Married

i > 80K

Test Data
Refund Marital Taxable

Status Income Cheat

No Married |80K ?
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Learning from oncogenomic data

decision trees: a simple example

Start from the root of tree. Refund Marital

‘
Refund

N

Test Data

Taxable

Status Income Cheat

No Married |80K ?

L

Single,y/orced

Taxinc

< SOV i > 80K

Married

deduction
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Learning from oncogenomic data

decision trees: real life

»a classifier of only 48 miRNA markers among 22 tissues
»overall accuracy of 90%
»binary decision tree

»uses logistic regression to assign a probability of belonging to one of the two branches

of a node
1
1
1 1
Liver 2
1 [ 1
Testis 3
12 4
1 L 1 1 — 1
13 16 5 6
I L 1 [ A 1 f_l_l I_H
14 Lung 17 18 | |Lymph node|| Melanocytes | | Brain || 7
[ [esemadl T I [ [
1 1 1 1 1 1
Colon| | 15 Breast || Prostate| | 19 23 Meninges 8
T 1 1
1 1 1 1 1 1
Stomach* || Pancreas Thyroid 20 | |Thymus (B3) 24 Thymus (B2) 9
[ 1 | e—— | [ |
21 22 Lung Head & neck™|| 11 10
(squamous)
| o | [ 1 | e | | e—
Lung || Bladder || Endometrium || Ovary Sarcoma || GIST | |Lung-pleura|| Kidney

Rosenfeld N et al., Nature Biotech 2008
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Learning from oncogenomic data

decision trees: real life

»a classifier of only 48 miRNA markers among 22 tissues

Sz 2 -

roverall accuracy frosenc. . temoranen R

Right branch

i

_ miRNASs used at the node

e

Py P

: . | & Liver Node no. 2 hsa-miR-122a, hsa-miR-200c"
>blnal'y deC|S|On t £ 2 Testis Node no. 3 hsa-miR-372
. 3 Node no. 12 Node no. 4 hsa-miR-200c, hsa-miR-181a, hsa-miR-205
1 1 g 4 Node no. 5 Node no. 6 hsa-miR-146a, hsa-miR-200a, hsa-miR-92a
>uses IOQIStIC regr 5 Lymph node Melanocytes hsa-miR-142-3p, hsa-miR-509
¥ 6 Brain Node no. 7 hsa-miR-92b, hsa-miR-9", hsa-miR-124a
Of a nOde ( 7 Meninges Node no. 8 hsa-miR-152, hsa-miR-130a
§ 8 Thymus (B2) Node no. © hsa-miR-205
£ 9 Node no. 11 Node no. 10 hsa-miR-192, hsa-miR-21, hsa-miR-210, hsa-miR-34b
' 10 Lung-pleura Kidney hsa-miR-194, hsa-miR-382, hsa-miR-210
[ 11 Sarcoma GIST hsa-miR-187, hsa-miR-29b
12 Node no. 13 Node no. 16 hsa-miR-145, hsa-miR-194, hsa-miR-205
‘3 13 Node no. 14 Lung (carcinoid) hsa-miR-21, hsa-let-7e
z 14 Colon Node no. 15 hsa-let-7i, hsa-miR-29a
15 Stomach” Pancreas hsa-miR-214, hsa-miR-19b, hsa-let-7i
" 16 Node no. 17 Node no. 18 hsa-miR-196a, hsa-miR-363, hsa-miR-31, hsa-miR-193a, hsa-miR-210
y 17° Breast Prostate hsa-miR-27b, hsa-let-7i, hsa-miR-181b
18 Node no. 19 Node no. 23 hsa-miR-205, hsa-miR-141, hsa-miR-193b, hsa-miR-373
19 Thyroid Node no. 20 hsa-miR-106b, hsa-let-7i, hsa-miR-138
2 20° Node no. 21 Node no. 22 hsa-miR-10b, hsa-miR-375, hsa-miR-99%a
14 |& 21 Lung Bladder hsa-miR-205, hsa-miR-152
] '» 22 Endometrium Ovary hsa-miR-345, hsa-miR-29¢, hsa-miR-182
g 23 Thymus (83) Node no. 24 hsa-miR-192, hsa-miR-345
Colon 19 24 Lung (squamous) Head & neck”™  hsa-miR-182, hsa-miR-34a, hsa-miR-148b
l_l_| [ 1 [ 1 | 1
Stomach* || Pancreas Thyroid 20 | |Thymus (B3) 24 Thymus (B2) 9
[ I 1 | —e— | [ 1
21 22 Lung Head & neck™|| 11 10
(squamous)
e | [ 1 ==  —— |
Lung || Bladder || Endometrium || Ovary Sarcoma || GIST | |Lung-pleura|| Kidney

Rosenfeld N et al., Nature Biotech 2008
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Learning from oncogenomic data

decision trees: pros and cons

»:) inexpensive to construct and extremely fast at classification
»:) can handle both continuous and symbolic attributes

»:) a standard method

» :)no need for distance functions

» :( relies on rectangular appromixation
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Learning from oncogenomic data

instance-based methods

»does not create a model but use training examples directly to classify unseen example (‘lazy’
classifiers)
»examples:

»nearest neighbor

»chooses k ‘closest’ point (nearest neighbors)

Set of Stored Cases

Atrl |- | AtrN | Class
A
B
B
Unseen Case
C
C
B
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Learning from oncogenomic data

k-NN

Unknown record

_ T
_ - - 4+ -
+ +
to+ 4
+ e+ RN
-— ,_.\+ — 1, 'I'\\ —I’ +\\\
la N [ - \ ! - \
I x ) { X ! l X |
\\_’I ‘\ I' |\ ’,
— + F o= s
+ o+ o + o+

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor
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Learning from oncogenomic data

k-NN: pros and cons

-choose k
»if too small, sensitive to noise
»if too large, indistinct class boundaries
»use techniques like cross validation
-sensitive to noise, so scaling or selecting features is important
-the quality of the distance function
»large margin nearest neighbor
-better-represented classes may dominate the prediction
»weighing
-nearest neighbor search can be expensive
»linear search, space partitioning, etc.
v high accuracy

v quite popular
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Learning from oncogenomic data

k-NN: pros and cons

»to create a ‘class predictor’ to classify new, unknown cases of AML and ALL

»‘neighborhood analysis’, the closeness of the gene to idealized expression patterns

A - AML  ALL
¢ =(1,1,1,1,1,1,0,0,0,0,0,0)

gene, = (e, €€3 ..., e 2)

gene, = (e), ez, €3, . . ., e2)

random idealized

(o]
. © expression patterns
(o}
(o]
o
o)
{ B AML ALL  Weight
HaML ! HALL ]
gene, [ r 1> V1 Wi
gene, | I > 1 v2 w2
|
| gene; 1 < 1 '3 "3 vi = Ixi = (uamL + wa)/2|
gene, | ' b v4 w4
- geneg | : 1> Vg wg
NVawe Va0 Golub TR et al., Science 1999

Tuosday, NOVOmbor 0. 2010



Learning from oncogenomic data

neighborhood analysis

survival probability

2 00
3 0O 20 4 6 8 100
;‘ — overall survival (mo)
E p——
s h— C
—_— o
= £
= 3
—— £
=
= P=0.010
}"g 0.0
-—E O 20 4 6 80 100
[{—_i_ overall survival (mo)
—= d
e 1.0
—
— >
— £ os
& % 06
w e
. = 04
i L= :
0 = § 02
g — P=0.800
E _— 0.0

0 20 40 60 80 100
overall survival (mo)

Ramaswamy S et al., Nature Gen 2002
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Learning from oncogenomic data

support vector machines

»constructs a hyperplane or a set hyperplanes in a high or infinite dimension space for
classification, regression or other tasks

B, B,
O O
O O O O
O O
O ---_'.-‘ O
Bz'~_§\ O Bz'~_§ .......... | O
B -\ .““ufs\ ..............
\\\\\\\ O N\N‘\§§\Q b
[ H b,,
N N
[ 0 _
O O "-.._.‘r'nar i '-..b11
] [] ] B "
b,,
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Learning from oncogenomic data

support vector machines

-optimization process is quite slow

-uncalibrated class membership probabilities

-only directly applicable for two-class tasks
»multi-class SVM

v high accuracy
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Learning from oncogenomic data

ensemble methods

Original
D Training data

Step 1: *
Create Multiple D

<
U &

Data Sets 1

4t U <
+— -
e

Step 2:
Build Multipl
ui ultiple C, C

Classifiers * * *

—
e
—

<

Step 3:
Combine
Classifiers

»if you have 25 independent classifiers with error rate e = 0.35
X (25 . b5
»the error rate of the ensembile is E T lef(1-)7 =0.06
=3\ !
»examples: bagging (sampling with replacement) and boosting (adaptively change the
distribution of training data by focusing on previously misclassified records)
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Learning from oncogenomic data

one example to describe it all

A, B) consensus clustering (Monti et al. 2003)

10

A Consensus Clustering B Consensus CDF l

08

C) SigClust for evealuation of

06

5 e cluster significance (Liu et al. 2008)
p-1 ¢ 3clusters
s l
& ¢ 6 dusters
= * 7 clusters
¢ 8 custers
9 dusters
o ¢ 10 clusters
e o2 a9 o 1o |D) silhouette plots to detect core samples
Consensus index value
: ., |
Silhouette Plot
n=202 4 dusters C,
1onlaveg s
S CIlaNC to build a 840-gene classifier
SigClust: All Pairwise
Cluster PN NL CL MES NL: 33| 0.10
PN
NL  3.90E-03 CL 54| 009

CL 1.21E-10 3.70E-04
MES 5.93E-17 2.69E-07 5.17E-06

MES 58 | 025

Ll L] Al . L] 1
00 0.2 04 0s o8 10
Sihzuetie widn s,
Average sihouetis wiath ¢ 018

TCGA, Cancer Cell 2010
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Learning from oncogenomic data

one example to describe it all

TCGA Core Samples Validation Samples C Xenografts

Proneural Neural Classical Mesenchymal Proneural Neural Classical Mesenchymal

s o I
DLL3
NKX2-2
SOX2
ERBB3
OLIG2
FBXO3
GABRB2
SNCG
MBP
DNMT 1
TOP1
ABL1
BOP1
FGFR3
PDGFA
EGFR
AKT2
NES
CASP1/4/5/8
ILR4
CHI3L1
TRADD
TLR2/4
RELB

Tuesday, November 9, 2010
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Learning from oncogenomic data

one example to describe it all

Proneural Neural Classical Mesenchymal
TP53  mut
IDH1 mut
ge
PDGFRA cn

mut

EGFR

o
[

«

NF1

o
=

mut

CDKN2A ¥

o
3

J
IN

0

N

=
-
3
=

Copy Number
Mutation ~ TP53LOH  EGFRuIIl I DA MV SERpRORON

\
g

Gene Expression

low level amplification
normal copy number
hemizygous deletion
homozygous deletion

TCGA, Cancer Cell 2010
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Learning from oncogenomic data

one example to describe it all

Proneural Neural
&k o B o
o Hazard Ratios: - Hazard Ratios:
W 0.3 (p=04) WQ56 (p=0.1)
@ | 1 (referenca) © B 1 (reference)
<o o
B o ®a
o o
L ? s
o ™~
<o o
= =)
o A L T L] o L L 4 L3
10 20 30 40 10 20 30 40
Months Months
Classical Mesenchymal
C o D =
- Hazard Ratios: - Hazard Ratios:
045 (p=0,02) =054 (p=002)
© |1 (reference) © M 1 (reference)
o o
- © - ©
2° 2=
5 . 5 .
N o n g
™ J. ™
o o
bt it
=X Ll ] L L] - ] L] L] 1]
10 20 a0 40 10 20 K4} 40
Months Months

= More intensive therapy: concurrent chemotherapy/radiation and/or >3 cycles of chemotherapy
mLess intensive therapy: non-concurrent chemotherapy/radiation or <4 cycles of chemotherapy

TCGA, Cancer Cell 2010
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Learning from oncogenomic data

outline

»unsupervised approach
»kk-means and PAM
»hierarchical clustering

»supervised approach
»decision trees
»lk-NN
»SVM

»model evaluation

»survival analysis

» BONUS: batch effect
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Learning from oncogenomic data

model evaluation

THE IDEA: to focus on the predictive capability of a model

»metrics for performance evaluation

»methods for performance evaluation/estimation

»methods for model comparison
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Learning from oncogenomic data

confusion matrix

the most popular | Accuracy

TP: true positive

FN: false negative

FP: false positive

TN: true negative

metrics
PREDICTED CLASS
Class=Yes |Class=No
Class=Yes a b
CLASS Class=No c d
(FP) (TN)
a+d

TP+TN

a+b+c+d TP+TN+FP+FN
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Learning from oncogenomic data

metrics

» ACCURACY can be MISLEADING:
»2-class problem:

»Class 0 = 9990
»Class | = 10

»if the model everything to be of Class 0O, then
»accuracy = 9990/1000 = 99.9%
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Learning from oncogenomic data

confusion matrix

the most popular | Accuracy

cost-sensitive

TP: true positive

FN: false negative

FP: false positive

TN: true negative

metrics
PREDICTED CLASS
Class=Yes |Class=No
Class=Yes a b
CLASS Class=No c d
(FP) (TN)
a+d

Precision (p) =

Recall (r) =

TP+TN

a

a

a+c
a

+b

a+b+c+d TP+TN+FP+FN
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Learning from oncogenomic data

nigh accuracy

OW precision

accuracy Vvs. precision

oW accuracy

nigh precision

nig

nig

N accuracy

N precision
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Learning from oncogenomic data

precision and recall

class | class 2

recall
e.l. true positive rate

precision
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Learning from oncogenomic data

performance estimation

»holdout
»reserve 2/3 for training and 2/3 for testing
»random subsampling
»repeated holdout
»cross validation
»partition data into k disjoint subsets
» k-fold: train on k-1 partitions, test on the remaining
»leave-one-out: k=n
»stratified sampling
»over-sampling vs under-sampling
»bootstrap

»sampling with replacement
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Learning from oncogenomic data

outline

»unsupervised approach
»k-means and PAM
»hierarchical clustering

»supervised approach

»decision trees
»lk-NN

»SVM

»model evaluation

»survival analysis
»BONUS: batch effect
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Learning from oncogenomic data

survival analysis

»a variety of methods for analyzing the timing of events (death, failure, recurrence, etc.)
»outline
»the survival function and the Kaplan-Meier estimator

» ASSUMPTIONS:

»those under study are representative of all subjects

pat survival time t those subjects who are under
observation at that survival time are “at risk for an event”
»censoring mechanism is unrelated to survival to survival
time
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Learning from oncogenomic data

survival analysis

p right-censored time consists of
psurvival time
» censored/uncensored
» explanatory variables thought to influence survival time

start of study end of study
_ uncensored
g /ﬁxed-right censoring
1 @
..‘22 . —————— @
33 i ---9« ran?c;m-right censoring
QY- - € eft censoring
-
n Bt ——-—-—— . __(@
6——————@_
T multiple intervals of observation
[ T l I I

0 20 40 60 80 100
time since start of study
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Learning from oncogenomic data

survival function & Kaplan-Meier Estimator

»SURVIVAL FUNCTION: the probability that a
patient will survival beyond a specified time

» KAPLAN-MEIER ESTIMATOR: estimates the

100

. . . . Gene A signature
survival function for life-time data

»to measure the fraction of patients that %

lives or stays free of recurrence beyond a

Gene B signature

specified time

Percent Survival

»can handle censored data

»ticks mark right-censoring
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Learning from oncogenomic data

outline

»unsupervised approach
»kk-means and PAM
»hierarchical clustering

»supervised approach
»decision trees
»lk-NN
»SVM

»model evaluation

»survival analysis

» BONUS: batch effect
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Learning from oncogenomic data

batch effects

“BATCH EFFECTS are sub-groups of measurements that
have qualitatively different behaviors across conditions and
are unrelated to the biological or scientific variables in a
study”

WE DON'T LIKE THEM BECAUSE
»increased variability and decreased power to
detect a real biological signal

»correlation between features
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Learning from oncogenomic data

batch effects

microarray expression profiling of
superficial transitional cell carcinoma
of bladder cancer samples with or
without surrounding carcinoma in
situ

Irizarry R et al., Nature Rev Gen 2010
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Nature Reviews | Genetics
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Learning from oncogenomic data

batch effects

Study description® Known variable used as a surrogate Principal components used as a surrogate Association Refs

with
Surrogaté Confounding Susceptible Principal components Principal components Susceptible outcome
(%)5 features rank of surrogate rank of outcome features Significant
(%) ! (correlation)’ (correlation)™ (%)** features

(%)33

Data set 1: gene expression Date 29.7 50.5 1 (0.570) 1 (0.649) 91.6 71.9

microarray, Affymetrix (N, =

22,283)

Data set 2: gene expression, Date 77.6 73.7 1(0.922) 1 (0.668) 98.5 62.2

Affymetrix (Np = 4167)

Data set 3: mass Processing 100 51.7 2 (0.344) 2 (0.344) 99.7 51.7

spectrometry (Np= 15,154) group

Data set 4: copy number Date 29.2 99.5 2 (0.921) 3 (0.485) 99.8 G8.8

variation, Affymetrix (Np=

945,806)

Data set 5: copy number Date 12.2 83.8 1 (0.553) 1(0.137) 99.8 74.1

variation, Affymetrix (Np=

945,806)

Data set 6: gene expression, Processing NA 838 5 (0.369) NA 97.1 NA

Affymetrix (N, = 22,277) group

Data set 7: gene expression, Date NA 62.8 2 (0.248) NA 96.7 NA

Agilent (N, = 17,594)

Data set 8: DNA Processing NA 78.6 3 (0.381) NA 96.8 NA

methylation, Agilent (N = group

27,578)

Data set 9: DNA sequencing, Date 24.2 32.1 2 (0.846) 2(0.213) 7 7 g 16.9

Solexa (N, = 2,886)

Irizarry R et al., Nature Rev Gen 2010
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Learning from oncogenomic data

batch effects

WHAT TO DO!

»experiment design solutions
»distribute batches and other sources of variation across biological
groups
»record information about changes in personnel, reagent, storage, etc.
»statistical solutions
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Learning from oncogenomic data

batch effects

Exploratory analyses

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as
laboratory and processing time)

Plot individual features versus biological variables and batch surrogates

|

Calculate principal components of the high-throughput data and identify components that correlate
with batch surrogates

Downstream analyses

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only
potential artefacts in the data?

Yesl lNo

Use measured technical variables as surrogates | Estimate artefacts from the high-throughput data
for batch and other technical artefacts . directly using surrogate variable analysis (SVA)

l l

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates,
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the
data to ensure that the clusters are not still driven by batch effects

Nature Reviews | Genetics

Irizarry R et al., Nature Rev Gen 2010
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